This study investigated the effects of two sodium bicarbonate (NaHCO 3) doses on estimated energy system contribution and performance during an intermittent high-intensity cycling test (HICT), and time-to-exhaustion (TTE) exercise. Twelve healthy males (stature: 1.75 ± 0.08 m; body mass: 67.5 ± 6.3 kg; age: 21.0 ± 1.4 years; maximal oxygen consumption: 45.1 ± 7.0 ml.kg.min −1) attended four separate laboratory visits. Maximal aerobic power (MAP) was identified from an incremental exercise test. During the three experimental visits, participants ingested either 0.2 g.kg −1 BM NaHCO 3 (SBC2), 0.3 g.kg −1 BM NaHCO 3 (SBC3), or 0.07 g.kg −1 BM sodium chloride (placebo; PLA) at 60 min pre-exercise. The HICT involved 3 × 60 s cycling bouts (90, 95, 100% MAP) interspersed with 90 s recovery, followed by TTE cycling at 105% MAP. Blood lactate was measured after each cycling bout to calculate estimates for glycolytic contribution to exercise. Gastrointestinal (GI) upset was quantified at baseline, 30 and 60 min post-ingestion, and 5 min post-exercise. Cycling TTE increased for SBC2 (+20.2 s; p = 0.045) and SBC3 (+31.9 s; p = 0.004) compared to PLA. Glycolytic contribution increased, albeit non-significantly, during the TTE protocol for SBC2 (+7.77 kJ; p = 0.10) and SBC3 (+7.95 kJ; p = 0.07) compared to PLA. GI upset was exacerbated postexercise after SBC3 for nausea compared to SBC2 and PLA (p < 0.05), whilst SBC2 was not significantly different to PLA for any symptom (p > 0.05). Both NaHCO 3 doses enhanced cycling performance and glycolytic contribution, however, higher doses may maximize ergogenic benefits.
The purpose of this study was to explore the effect of individualised sodium bicarbonate (NaHCO3) supplementation according to a pre-established individual time-to-peak (TTP) blood bicarbonate (HCO3 -) on 4-km cycling time trial (TT) performance in the heat. Eleven recreationally trained male cyclists (age: 28 ± 6 years, height: 180 ± 6 cm, body mass: 80.5 ± 8.4 kg) volunteered for this study in a randomised, crossover, triple-blind, placebo-controlled design. An initial visit was conducted to determine TTP HCO3following 0.2 g.kg -1 body mass (BM) NaHCO3 ingestion. Subsequently, on three separate occasions, participants completed a 4-km cycling TT in the heat (30 degrees centigrade; °C) (relative humidity ~40%) following ingestion of either NaHCO3 (0.2 g.kg -1 body mass), a sodium chloride placebo (0.2 g.kg -1 BM; PLA) or no supplementation (control; CON) at the predetermined individual TTP HCO3 -.Absolute peak [HCO3 -] prior to the 4-km cycling TT's was elevated for NaHCO3 compared to PLA (+2.8 mmol.l -1 ; p = 0.002; g = 2.2) and CON (+2.5 mmol.l -1 ; p < 0.001; g = 2.1). Completion time following NaHCO3 was 5.6 ± 3.2 s faster than PLA (1.6%; CI: 2.8, 8.3; p = 0.001; g = 0.2) and 4.7 ± 2.8 s faster than CON (1.3%; CI: 2.3, 7.1; p = 0.001; g = 0.2). These results demonstrate that NaHCO3 ingestion at a pre-established individual TTP HCO3improves 4-km cycling TT performance in the heat, likely through enhancing buffering capacity.
Purpose: To examine whether an ecologically valid, intermittent, sprint-based warm-up strategy impacted the ergogenic capacity of individualized sodium bicarbonate (NaHCO3) ingestion on 4-km cycling time-trial (TT) performance. Methods: A total of 8 male cyclists attended 6 laboratory visits for familiarization, determination of time to peak blood bicarbonate, and 4 × 4-km cycling TTs. Experimental beverages were administered doubleblind. Treatments were conducted in a block-randomized, crossover order: intermittent warm-up + NaHCO3 (IWSB), intermittent warm-up + placebo, control warm-up + NaHCO3 (CWSB), and control warm-up + placebo (CWP). The intermittent warm-up comprised exercise corresponding to lactate threshold (5 min at 50%, 2 min at 60%, 2 min at 80%, 1 min at 100%, and 2 min at 50%) and 3 × 10-second maximal sprints. The control warm-up comprised 16.5 minutes cycling at 150 W. Participants ingested 0.3 g·kg body mass−1 NaHCO3 or 0.03 g·kg body mass−1 sodium chloride (placebo) in 5 mL·kg body mass−1 fluid (3:2, water and sugar-free orange squash). Paired t tests were conducted for TT performance. Hematological data (blood bicarbonate and blood lactate) and gastrointestinal discomfort were analyzed using repeated-measures analysis of variance. Results: Performance was faster for CWSB versus IWSB (5.0 [6.1] s; P = .052) and CWP (5.8 [6.0] s; P = .03). Pre-TT bicarbonate concentration was elevated for CWSB versus IWSB (+9.3 mmol·L−1; P < .001) and CWP (+7.1 mmol·L−1; P < .001). Post-TT blood lactate concentration was elevated for CWSB versus CWP (+2.52 mmol·L−1; P = .022). Belching was exacerbated pre-warm-up for IWSB versus intermittent warm-up +placebo (P = .046) and CWP (P = .027). Conclusion: An intermittent, sprint-based warm-up mitigated the ergogenic benefits of NaHCO3 ingestion on 4-km cycling TT performance.
Sodium bicarbonate (NaHCO3) is a widely researched ergogenic aid, but the optimal blinding strategy during randomised placebo-controlled trials is unknown. In this multi-study project, we aimed to determine the most efficacious ingestion strategy for blinding NaHCO3 research. During study one, 16 physically active adults tasted 0.3 g kg−1 body mass NaHCO3 or 0.03 g kg−1 body mass sodium chloride placebo treatments given in different flavour (orange, blackcurrant) and temperature (chilled, room temperature) solutions. They were required to guess which treatment they had received. During study two, 12 recreational athletes performed time-to-exhaustion (TTE) cycling trials (familiarisation, four experimental). Using a randomised, double-blind design, participants consumed 0.3 g kg−1 body mass NaHCO3 or a placebo in 5 mL kg−1 body mass chilled orange squash/water solutions or capsules and indicated what they believed they had received immediately after consumption, pre-TTE and post-TTE. In study one, NaHCO3 prepared in chilled orange squash resulted in the most unsure ratings (44%). In study two, giving NaHCO3 in capsules resulted in more unsure ratings than in solution after consumption (92 vs 33%), pre-TTE (67 vs. 17%) and post-TTE (50 vs. 17%). Administering NaHCO3 in capsules was the most efficacious blinding strategy which provides important implications for researchers conducting randomised placebo-controlled trials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.