This research investigates the relationship between inter-domain conflict in the form of work-family conflict and family-work conflict with various facets of employee job satisfaction. The study was conducted among police personnel (n ¼ 119) in a large southeastern state. Results indicate that work-family conflict is significantly related to satisfaction with job in general, pay, supervision, promotion, work, and co-workers. Family-work conflict is not as consistently related to the facets of job satisfaction. In general, as expected, conflict between work-family is more closely related to employee job satisfaction than conflict between family-work. Managerial implications are included as well as directions for future theoretical research.
Background Cardiovascular outcomes for people with familial hypercholesterolaemia can be improved with diagnosis and medical management. However, 90% of individuals with familial hypercholesterolaemia remain undiagnosed in the USA. We aimed to accelerate early diagnosis and timely intervention for more than 1•3 million undiagnosed individuals with familial hypercholesterolaemia at high risk for early heart attacks and strokes by applying machine learning to large health-care encounter datasets.
MethodsWe trained the FIND FH machine learning model using deidentified health-care encounter data, including procedure and diagnostic codes, prescriptions, and laboratory findings, from 939 clinically diagnosed individuals with familial hypercholesterolaemia (395 of whom had a molecular diagnosis) and 83 136 individuals presumed free of familial hypercholesterolaemia, sampled from four US institutions. The model was then applied to a national health-care encounter database (170 million individuals) and an integrated health-care delivery system dataset (174 000 individuals). Individuals used in model training and those evaluated by the model were required to have at least one cardiovascular disease risk factor (eg, hypertension, hypercholesterolaemia, or hyperlipidemia). A Health Insurance Portability and Accountability Act of 1996-compliant programme was developed to allow providers to receive identification of individuals likely to have familial hypercholesterolaemia in their practice. Findings Using a model with a measured precision (positive predictive value) of 0•85, recall (sensitivity) of 0•45, area under the precision-recall curve of 0•55, and area under the receiver operating characteristic curve of 0•89, we flagged 1 331 759 of 170 416 201 patients in the national database and 866 of 173 733 individuals in the health-care delivery system dataset as likely to have familial hypercholesterolaemia. Familial hypercholesterolaemia experts reviewed a sample of flagged individuals (45 from the national database and 103 from the health-care delivery system dataset) and applied clinical familial hypercholesterolaemia diagnostic criteria. Of those reviewed, 87% (95% Cl 73-100) in the national database and 77% (68-86) in the health-care delivery system dataset were categorised as having a high enough clinical suspicion of familial hypercholesterolaemia to warrant guideline-based clinical evaluation and treatment.Interpretation The FIND FH model successfully scans large, diverse, and disparate health-care encounter databases to identify individuals with familial hypercholesterolaemia.
FundingThe FH Foundation funded this study. Support was received from Amgen, Sanofi, and Regeneron.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.