In the developed world, extreme prematurity is the leading cause of neonatal mortality and morbidity due to a combination of organ immaturity and iatrogenic injury. Until now, efforts to extend gestation using extracorporeal systems have achieved limited success. Here we report the development of a system that incorporates a pumpless oxygenator circuit connected to the fetus of a lamb via an umbilical cord interface that is maintained within a closed ‘amniotic fluid' circuit that closely reproduces the environment of the womb. We show that fetal lambs that are developmentally equivalent to the extreme premature human infant can be physiologically supported in this extra-uterine device for up to 4 weeks. Lambs on support maintain stable haemodynamics, have normal blood gas and oxygenation parameters and maintain patency of the fetal circulation. With appropriate nutritional support, lambs on the system demonstrate normal somatic growth, lung maturation and brain growth and myelination.
Adult wound healing is characterized by an exuberant inflammatory response and scar formation. In contrast, scarless fetal wound healing has diminished inflammation, a lack of fibroplasia, and restoration of normal architecture. We have previously shown that fetal wounds produce less inflammatory cytokines, and the absence of IL-10, an anti-inflammatory cytokine, results in fetal scar formation. We hypothesized that increased IL-10 would decrease inflammation and create an environment conducive for regenerative healing in the adult. To test this hypothesis, a lentiviral vector expressing IL-10 and green fluorescent protein (GFP) (Lenti-IL-10) or GFP alone (Lenti-GFP) was injected at the wound site 48 hours before wounding. We found that both Lenti-IL-10 and Lenti-GFP were expressed in the wounds at 1 and 3 days post wounding. At 3 days, Lenti-IL-10-treated wounds demonstrated decreased inflammation and decreased quantities of all proinflammatory mediators analyzed with statistically different levels of IL-6, monocyte chemoattractant protein-1, and heat-shock protein 47. At 3 weeks, Lenti-GFP wounds demonstrated scar formation. In contrast, wounds injected with Lenti-IL-10 demonstrated decreased inflammation, a lack of abnormal collagen deposition, and restoration of normal dermal architecture. We conclude that lentivirus-mediated overexpression of IL-10 decreases the inflammatory response to injury, creating an environment conducive for regenerative adult wound healing.
Background: Fetal myelomeningocele (fMMC) repair has become accepted as a standard of care option in selected circumstances. We reviewed our outcomes for fMMC repair from referral and evaluation through surgery, delivery and neonatal discharge. Material and Methods: All patients referred for potential fMMC repair were reviewed from January 1, 2011 through March 7, 2014. Maternal and neonatal data were collected on the 100 patients who underwent surgery. Results: 29% of those evaluated met the criteria and underwent fMMC repair (100 cases). The average gestational age was 21.9 weeks at evaluation and 23.4 weeks at fMMC repair. Complications included membrane separation (22.9%), preterm premature rupture of membranes (32.3%) and preterm labor (37.5%). Average gestational age at delivery was 34.3 weeks and 54.2% delivered at ≥35 weeks. The perinatal loss rate was 6.1% (2 intrauterine fetal demises and 4 neonatal demises); 90.8% of women delivered at the Children's Hospital of Philadelphia and 3.4% received transfusions. With regard to the neonates, 2 received ventriculoperitoneal shunts prior to discharge; 71.1% of neonates had no evidence of hindbrain herniation on MRI. Of the 80 neonates evaluated, 55% were assigned a functional level of one or more better than the prenatal anatomic level. Conclusion: In an experienced program, maternal and neonatal outcomes for patients undergoing fMMC repair are comparable to results of the MOMS trial.
In utero gene editing has the potential to prenatally treat genetic diseases that result in significant morbidity and mortality before or shortly after birth. We assessed the viral vector-mediated delivery of clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated 9 (CRISPR-Cas9) or base editor 3 (BE3) in utero , seeking therapeutic modification of Pcsk9 or Hpd in wild-type mice or the murine model of hereditary tyrosinemia type 1 (HT1), respectively. We observed long-term postnatal persistence of edited cells in both models, with reduction of plasma PCSK9 and cholesterol levels following in utero Pcsk9 targeting and rescue of the lethal phenotype of HT1 following in utero Hpd targeting. The results of this proof-of-concept work demonstrate the possibility to efficiently perform gene editing before birth, pointing to a potential new therapeutic approach for select congenital genetic disorders.
Clinical advances enable the prenatal diagnosis of genetic diseases that are candidates for gene and enzyme therapies such as messenger RNA (mRNA)–mediated protein replacement. Prenatal mRNA therapies can treat disease before the onset of irreversible pathology with high therapeutic efficacy and safety due to the small fetal size, immature immune system, and abundance of progenitor cells. However, the development of nonviral platforms for prenatal delivery is nascent. We developed a library of ionizable lipid nanoparticles (LNPs) for in utero mRNA delivery to mouse fetuses. We screened LNPs for luciferase mRNA delivery and identified formulations that accumulate within fetal livers, lungs, and intestines with higher efficiency and safety compared to benchmark delivery systems, DLin-MC3-DMA and jetPEI. We demonstrate that LNPs can deliver mRNAs to induce hepatic production of therapeutic secreted proteins. These LNPs may provide a platform for in utero mRNA delivery for protein replacement and gene editing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.