Background
The impact of catheter ablation of ventricular tachycardia (VT) on all-cause mortality remains unknown.
Objective
To examine the association between VT recurrence after ablation and survival in patients with scar-related VT.
Methods
Analysis of 2,061 patients with structural heart disease referred for catheter ablation of scar-related VT from 12 international centers was performed. Data on clinical and procedural variables, VT recurrence, and mortality were analyzed. Kaplan-Meier analysis was used to estimate freedom from recurrent VT, transplant, and death. Cox proportional hazards frailty models were used to analyze the effect of risk factors on VT recurrence and mortality.
Results
One-year freedom from VT recurrence was 70% (72% in ischemic and 68% in non-ischemic cardiomyopathy). 57 (3%) patients underwent cardiac transplantation and 216 (10%) died during follow-up. At one year, the estimated rate of transplant and/or mortality was 15% (same for ischemic and non-ischemic cardiomyopathy). Transplant-free survival was significantly higher in patients without VT recurrence compared to those with recurrence (90% vs. 71%, p<0.001). In multivariable analysis, recurrence of VT after ablation showed the highest risk for transplant and/or mortality (HR 6.9 (5.3-9.0); p<0.001). In patients with EF<30% and across all NYHA classes, improved transplant-free survival was seen in those without VT recurrence.
Conclusions
Catheter ablation of VT in patients with structural heart disease results in 70% freedom from VT recurrence, with an overall transplant and/or mortality rate of 15% at 1 year. Freedom from VT recurrence is associated with improved transplant-free survival, independent of heart failure severity.
Background
Arrhythmogenic right ventricular cardiomyopathy (ARVC) is an inherited genetic myocardial disease characterized by fibrofatty replacement of the myocardium and a predisposition to cardiac arrhythmias and sudden death. We evaluated the cardiomyopathy gene titin (TTN) as a candidate ARVC gene because of its proximity to an ARVC locus at position 2q32 and the connection of the titin protein to the transitional junction at intercalated disks.
Methods and Results
All 312 titin exons known to be expressed in human cardiac titin and the complete 3’ untranslated region were sequenced in 38 ARVC families. Eight unique TTN variants were detected in 7 families including a prominent Thr2896Ile mutation that showed complete segregation with the ARVC phenotype in one large family. The Thr2896IIe mutation maps within a highly conserved immunoglobulin-like fold (Ig10 domain), located in titin’s spring region. Native gel electrophoresis, NMR, intrinsic fluorescence, and proteolysis assays of wildtype and mutant Ig10 domains revealed that the Thr2896IIe exchange reduces the structural stability and increases the propensity towards degradation of the Ig10 domain. The phenotype of TTN variant carriers was characterized by history of sudden death (5/7 families), progressive myocardial dysfunction causing death or heart transplant (8/14 cases), frequent conduction disease (11/14), and incomplete penetrance (86%).
Conclusions
Our data provide evidence that titin mutations can cause ARVC, a finding that further expands the origin of the disease beyond desmosomal proteins. Structural impairment of the titin spring is a likely cause of ARVC and constitutes a novel mechanism underlying myocardial remodeling and sudden cardiac death.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.