BackgroundCold temperatures and their alleviation affect many plant traits including the abundance of protein coding gene transcripts. Transcript level changes that occur in response to cold temperatures and their alleviation are shared or vary across genotypes. In this study we identify individual transcripts and groups of functionally related transcripts that consistently respond to cold and its alleviation. Genes that respond differently to temperature changes across genotypes may have limited functional importance. We investigate if these genes share functions, and if their genotype-specific gene expression levels change in magnitude or rank across temperatures.ResultsWe estimate transcript abundances from over 22,000 genes in two unrelated Zea mays inbred lines during and after cold temperature exposure. Genotype and temperature contribute to many genes’ abundances. Past cold exposure affects many fewer genes. Genes up-regulated in cold encode many cytokinin glucoside biosynthesis enzymes, transcription factors, signalling molecules, and proteins involved in diverse environmental responses. After cold exposure, protease inhibitors and cuticular wax genes are newly up-regulated, and environmentally responsive genes continue to be up-regulated. Genes down-regulated in response to cold include many photosynthesis, translation, and DNA replication associated genes. After cold exposure, DNA replication and translation genes are still preferentially downregulated. Lignin and suberin biosynthesis are newly down-regulated. DNA replication, reactive oxygen species response, and anthocyanin biosynthesis genes have strong, genotype-specific temperature responses. The ranks of genotypes’ transcript abundances often change across temperatures.ConclusionsWe report a large, core transcriptome response to cold and the alleviation of cold. In cold, many of the core suite of genes are up or downregulated to control plant growth and photosynthesis and limit cellular damage. In recovery, core responses are in part to prepare for future stress. Functionally related genes are consistently and greatly up-regulated in a single genotype in response to cold or its alleviation, suggesting positive selection has driven genotype-specific temperature responses in maize.Electronic supplementary materialThe online version of this article (10.1186/s12864-018-5134-7) contains supplementary material, which is available to authorized users.
Cultivated germplasm provides an opportunity to investigate how crop agronomic traits, selection for major genes, and differences in crossing-over rates drive patterns of allelic variation. To identify how these factors correlated with allelic variation within a collection of cultivated bread wheat (Triticum aestivum L.), we generated genotypes for 388 accessions grown in Canada over the past 170 yr using filtered single nucleotide polymorphism (SNP) calls from an Illumina Wheat iSelect 90K SNP-array. Entries' breeding program, era of release, grain texture, kernel color, and growth habit contributed to allelic differentiation. Allelic diversity and linkage disequilibrium (LD) of markers flanking some major loci known to affect traits such as gluten strength, growth habit, and grain color were consistent with selective sweeps. Nonetheless, some flanking markers of major loci had low LD and high allelic diversity. Positive selection may have acted upon homoeologous genes that had significant enrichment for the gene ontology terms 'response-to-auxin' and 'response-to-wounding.' Long regions of LD, spanning approximately one-third the length of entire chromosomes, were associated with many pericentromeric regions. These regions were also characterized by low diversity. Enhancing recombination across these regions could generate novel allele combinations to accelerate Canadian wheat improvement.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.