Purpose With the rise of online discussion and argument mining, methods that are able to analyze arguments become increasingly important. A recent study proposed the usage of agreement between arguments to represent both stance polarity and intensity, two important aspects in analyzing arguments. However, this study primarily focused on finetuning bidirectional encoder representations from transformer (BERT) model. The purpose of this paper is to propose convolutional neural network (CNN)-BERT architecture to improve the previous method. Design/methodology/approach The used CNN-BERT architecture in this paper directly uses the generated hidden representation from BERT. This allows for better use of the pretrained BERT model and makes finetuning the pretrained BERT model optional. The authors then compared the CNN-BERT architecture with the method proposed in the previous study (BERT and Siamese-BERT). Findings Experiment results demonstrate that the proposed CNN-BERT is able to achieve a 71.87% accuracy in measuring agreement between arguments. Compared to the previous study that achieve an accuracy of 68.58%, the CNN-BERT architecture was able to increase the accuracy by 3.29%. The CNN-BERT architecture is also able to achieve a similar result even without further pretraining the BERT model. Originality/value The principal originality of this paper is the proposition of using CNN-BERT to better use the pretrained BERT model for measuring agreement between arguments. The proposed method is able to improve performance and also able to achieve a similar result without further training the BERT model. This allows separation of the BERT model from the CNN classifier, which significantly reduces the model size and allows the usage of the same pretrained BERT model for other problems that also did not need to finetune their BERT model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.