Ehrenborg obtained asymptotic results for nearly alternating permutations and conjectured an asymptotic formula for the number of permutations that have a nearly periodic run pattern. We prove a generalization of this conjecture, rederive the fact that the asymptotic number of permutations with a periodic run pattern has the form $Cr^{-n}\,n!$, and show how to compute the various constants. A reformulation in terms of iid random variables leads to an eigenvalue problem for a Fredholm integral equation. Tools from functional analysis establish the necessary properties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.