In the past decade, there has been a tremendous increase in the use of neurophysiological methods to better understand marketing phenomena among academics and practitioners. However, the value of these methods in predicting advertising success remains underresearched. Using a unique experimental protocol to assess responses to 30-second television ads, the authors capture many measures of advertising effectiveness across six commonly used methods (traditional self-reports, implicit measures, eye tracking, biometrics, electroencephalography, and functional magnetic resonance imaging). These measures have been shown to reliably tap into higher-level constructs commonly used in advertising research: attention, affect, memory, and desirability. Using time-series data on sales and gross rating points, the authors attempt to relate individual-level response to television ads in the lab to the ads’ aggregate, market-level elasticities. The authors show that functional magnetic resonance imaging measures explain the most variance in advertising elasticities beyond the baseline traditional measures. Notably, activity in the ventral striatum is the strongest predictor of real-world, market-level response to advertising. The authors discuss the findings and their significant implications for theory, research, and practice.
Individuals who abuse substances often differ from nonusers in their brain structure. Substance abuse and addiction is often associated with atrophy and pathology of grey matter, but much less is known about the role of white matter, which constitutes over half of human brain volume. Diffusion tensor imaging (DTI), a method for non-invasively estimating white matter, is increasingly being used to study addiction and substance abuse. Here we review recent DTI studies of major substances of abuse (alcohol, opiates, cocaine, cannabis, and nicotine substance abuse) to examine the relationship, specificity, causality, and permanence of substance-related differences in white matter microstructure. Across substance, users tended to exhibit differences in the microstructure of major fiber pathways, such as the corpus callosum. The direction of these differences, however, appeared substance-dependent. The subsample of longitudinal studies reviewed suggests that substance abuse may cause changes in white matter, though it is unclear to what extent such alterations are permanent. While collectively informative, some studies reviewed were limited by methodological and technical approach. We therefore also provide methodological guidance for future research using DTI to study substance abuse.
Dysfunction of cognitive control often leads to impulsive decision-making in clinical and healthy populations. Some research suggests that a generalized cognitive control mechanism underlies the ability to modulate various types of impulsive behavior, while other evidence suggests different forms of impulsivity are dissociable, and rely on distinct neural circuitry. Past research consistently implicates several brain regions, such as the striatum and portions of the prefrontal cortex, in impulsive behavior. However the ventral and dorsal striatum are distinct in regards to function and connectivity. Nascent evidence points to the importance of frontostriatal white matter connectivity in impulsivity, yet it remains unclear whether particular tracts relate to different control behaviors. Here we used probabilistic tractography of diffusion imaging data to relate ventral and dorsal frontostriatal connectivity to reward and motor impulsivity measures. We found a double dissociation such that individual differences in white matter connectivity between the ventral striatum and the ventromedial prefrontal cortex and dorsolateral prefrontal cortex was associated with reward impulsivity, as measured by delay discounting, whereas connectivity between dorsal striatum and supplementary motor area was associated with motor impulsivity, but not vice versa. Our findings suggest that (a) structural connectivity can is associated with a large amount of behavioral variation; (b) different types of impulsivity are driven by dissociable frontostriatal neural circuitry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.