ImportanceIn patients with severe aortic valve stenosis at intermediate surgical risk, transcatheter aortic valve replacement (TAVR) with a self-expanding supra-annular valve was noninferior to surgery for all-cause mortality or disabling stroke at 2 years. Comparisons of longer-term clinical and hemodynamic outcomes in these patients are limited.ObjectiveTo report prespecified secondary 5-year outcomes from the Symptomatic Aortic Stenosis in Intermediate Risk Subjects Who Need Aortic Valve Replacement (SURTAVI) randomized clinical trial.Design, Setting, and ParticipantsSURTAVI is a prospective randomized, unblinded clinical trial. Randomization was stratified by investigational site and need for revascularization determined by the local heart teams. Patients with severe aortic valve stenosis deemed to be at intermediate risk of 30-day surgical mortality were enrolled at 87 centers from June 19, 2012, to June 30, 2016, in Europe and North America. Analysis took place between August and October 2021.InterventionPatients were randomized to TAVR with a self-expanding, supra-annular transcatheter or a surgical bioprosthesis.Main Outcomes and MeasuresThe prespecified secondary end points of death or disabling stroke and other adverse events and hemodynamic findings at 5 years. An independent clinical event committee adjudicated all serious adverse events and an independent echocardiographic core laboratory evaluated all echocardiograms at 5 years.ResultsA total of 1660 individuals underwent an attempted TAVR (n = 864) or surgical (n = 796) procedure. The mean (SD) age was 79.8 (6.2) years, 724 (43.6%) were female, and the mean (SD) Society of Thoracic Surgery Predicted Risk of Mortality score was 4.5% (1.6%). At 5 years, the rates of death or disabling stroke were similar (TAVR, 31.3% vs surgery, 30.8%; hazard ratio, 1.02 [95% CI, 0.85-1.22]; P = .85). Transprosthetic gradients remained lower (mean [SD], 8.6 [5.5] mm Hg vs 11.2 [6.0] mm Hg; P < .001) and aortic valve areas were higher (mean [SD], 2.2 [0.7] cm2 vs 1.8 [0.6] cm2; P < .001) with TAVR vs surgery. More patients had moderate/severe paravalvular leak with TAVR than surgery (11 [3.0%] vs 2 [0.7%]; risk difference, 2.37% [95% CI, 0.17%- 4.85%]; P = .05). New pacemaker implantation rates were higher for TAVR than surgery at 5 years (289 [39.1%] vs 94 [15.1%]; hazard ratio, 3.30 [95% CI, 2.61-4.17]; log-rank P < .001), as were valve reintervention rates (27 [3.5%] vs 11 [1.9%]; hazard ratio, 2.21 [95% CI, 1.10-4.45]; log-rank P = .02), although between 2 and 5 years only 6 patients who underwent TAVR and 7 who underwent surgery required a reintervention.Conclusions and RelevanceAmong intermediate-risk patients with symptomatic severe aortic stenosis, major clinical outcomes at 5 years were similar for TAVR and surgery. TAVR was associated with superior hemodynamic valve performance but also with more paravalvular leak and valve reinterventions.
Organisms are composed of hierarchically arranged component parts that must work together to successfully achieve whole organism functions. In addition to integration among individual parts, some ecological demands require functional systems to work together in a type of inter-system performance integration. While performance can be measured by the ability to successfully accomplish ecologically relevant tasks, integration across performance traits can provide a deeper understanding of how these traits allow an organism to survive. The ability to move and the ability to consume food are essential to life, but during prey capture these two functions are typically integrated. Suction-feeding fishes have been used as a model of these interactions, but it is unclear how other ecologically relevant scenarios might reduce or change integration. To stimulate further research into these ideas, we highlight three contexts with the potential to result in changes in integration and underlying performance traits: (1) behavioral flexibility in aquatic feeding modes for capturing alternative prey types, (2) changes in the physical demands imposed by prey capture across environments, and (3) secondary adaptation for suction prey capture behaviors. These examples provide a broad scope of potential drivers of integration that are relevant to selection pressures experienced across vertebrate evolution. To demonstrate how these ideas can be applied and stimulate hypotheses, we provide observations from preliminary analyses of locally adapted populations of Trinidadian guppies (Poecilia reticulata) capturing prey using suction and biting feeding strategies and an Atlantic mudskipper (Periophthalmus barbarus) capturing prey above and below water. We also include a re-analysis of published data from two species of secondarily aquatic cetaceans, beluga whales (Delphinapterus leucas) and Pacific white-sided dolphins (Lagenorhynchus obliquidens), to examine the potential for secondary adaptation to affect integration in suction prey capture behaviors. Each of these examples support the broad importance of integration between locomotor and feeding performance but outline new ways that these relationships can be important when suction demands are reduced or altered. Future work in these areas will yield promising insights into vertebrate evolution and we hope to encourage further discussion on possible avenues of research on functional integration during prey capture.
No abstract
Chapter 2 INTRODUCTIONThe Portal to Texas History SM is a gateway to a significant set of humanities collections within the digital library of the University of North Texas (UNT) Libraries (http://texashistory.unt.edu/). In collaboration with over 200 content partners, the Portal provides access to collections from Texas libraries, museums, archives, historical societies, and private collectors. The Portal archives and provides access to more than 165,000 digital objects, comprising over 2.3 million image files. Historic newspapers represent a large segment of the materials, with over half a million searchable pages dating from 1829 to the present. This significant collection is not only used in traditional research by scholars and lifelong learners, but also forms the basis for a collaboration between UNT and Stanford University in text mapping research that is exploring new methods for programmatically finding and analyzing meaningful patterns. Kathleen Murray University of North Texas, USA Mark PhillipsDevelopment of the Portal began in 2003 when the UNT Libraries selected a system vendor for its digital library, and, as is typical of many digital libraries, based design decisions largely on the requirements of librarians and what they imagined end users would need. When the reengineering project began in 2008, the number of unique visitors per month had grown from 1,000 in 2004 to over 20,000. This success was accompanied by operational and management challenges, which affected the Portal's content partners, users, and other stakeholders.Scale issues created by the continuous addition of content and the increased usage required constant attention and distracted the systems team from other areas of development. The underlying data model for both the digital objects and descriptive metadata were limiting the kind of items that could be ingested into the system. Development constraints associated with the underlying technical infrastructure also emerged. In particular, the design and implementation of new features and functions was limited by outdated software and changing vendor priorities. It was often not feasible to make interface design changes without programmatic changes in the supporting infrastructure.In 2007, a decision was made to replace the legacy asset management system with a digital library infrastructure and framework based largely on modern open source components widely used throughout the world. This approach distinguishes the UNT Libraries within the broader library community, in which libraries generally employ single-vendor, integrated systems for their digital libraries. Replacing the legacy system also presented an opportunity to include users directly in the design process.The UNT Libraries received a National Leadership Grant from the Institute of Museum and Library Services (LG-06-07-0040-07) for a twoyear study (2007)(2008)(2009) to redesign the Portal's interface. At the outset of the project, an application development model was drafted to guide the project's work. The model employ...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.