A method was developed for registering three-dimensional knee implant models to single plane X-ray fluoroscopy images. We use a direct image-to-image similarity measure, taking advantage of the speed of modern computer graphics workstations to quickly render simulated (predicted) images. As a result, the method does not require an accurate segmentation of the implant silhouette in the image (which can be prone to errors). A robust optimization algorithm (simulated annealing) is used that can escape local minima and find the global minimum (true solution). Although we focus on the analysis of total knee arthroplasty (TKA) in this paper, the method can be (and has been) applied to other implanted joints, including, but not limited to, hips, ankles, and temporomandibular joints. Convergence tests on an in vivo image show that the registration method can reliably find poses that are very close to the optimal (i.e., within 0.4 degrees and 0.1 mm), even from starting poses with large initial errors. However, the precision of translation measurement in the Z (out-of-plane) direction is not as good. We also show that the method is robust with respect to image noise and occlusions. However, a small amount of user supervision and intervention is necessary to detect cases when the optimization algorithm falls into a local minimum. Intervention is required less than 5% of the time when the initial starting pose is reasonably close to the correct answer, but up to 50% of the time when the initial starting pose is far away. Finally, extensive evaluations were performed on cadaver images to determine accuracy of relative pose measurement. Comparing against data derived from an optical sensor as a "gold standard," the overall root-mean-square error of the registration method was approximately 1.5 degrees and 0.65 mm (although Z translation error was higher). However, uncertainty in the optical sensor data may account for a large part of the observed error.
Spatiotemporal human representation based on 3D visual perception data is a rapidly growing research area. Representations can be broadly categorized into two groups, depending on whether they use RGB-D information or 3D skeleton data. Recently, skeletonbased human representations have been intensively studied and kept attracting an increasing attention, due to their robustness to variations of viewpoint, human body scale and motion speed as well as the realtime, online performance. This paper presents a comprehensive survey of existing space-time representations of people based on 3D skeletal data, and provides an informative categorization and analysis of these methods from the perspectives, including information modality, representation encoding, structure and transition, and feature engineering. We also provide a brief overview of skeleton acquisition devices and construction methods, enlist a number of benchmark datasets with skeleton data, and discuss potential future research directions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.