Generally, antipsychotic agents are dopamine receptor blocking agents that also block conditioned avoidance responding (CAR) in the rat. Recently, however, both (Q-methoxyphenyl)piperazine (OMPP, 1h) and (m-chlorophenyl)piperazine (MCPP, 1o) have been reported to block conditioned avoidance responding in the rat although neither has dopamine receptor blocking properties. The present paper examines the behavioral and biochemical profile of a number of additional substituted phenylpiperazines. None of the phenylpiperazines tested demonstrated high affinity for either dopamine D-1 or D-2 receptor sites, yet many were effective in blocking CAR. The results suggest that the phenylpiperazines may be effective antipsychotic agents without blocking dopamine receptors. Moreover, the active compounds did demonstrate activity in displacing ligand binding to serotonin receptors. Receptor binding profiles were determined for 5-HT-1A and 5-HT-1B binding sites as well as for 5-HT-2 sites. The data from this preclinical test suggest these phenylpiperazines might be effective antipsychotic agents acting via a nondopaminergic mechanism of action.
To more clearly define the roles of glutamine and 2-oxoglutarate as metabolic precursors of the transmitter pools of glutamate and GABA we have determined the relative rates at which these four substances, and adenosine and serotonin are accumulated by synaptosomes derived from twelve regions of the rat brain. Initial transport conditions and low substrate concentrations were used to maximize uptake by high-affinity systems, except the uptake of glutamine was determined at both low and high concentrations. Because the uptake of 2-oxoglutarate is markedly enhanced by glutamine, 2-oxoglutarate uptake was determined with and without glutamine (0.2 mM) added to the incubation medium. For each substrate, regional differences in uptake ranged from approximately two- to fourteen-fold. An anaylsis of uptake kinetics revealed that the regional differences were due primarily to differences in transport capacity rather than substrate affinities, at least for glutamate, GABA, and 2-oxoglutarate. Thirty-four correlation analyses of relative uptake values were performed. Strong correlations were found between 2-oxoglutarate and glutamate, and between glutamine and glutamate, whereas no strong correlations occurred between these substrates and GABA. Our results support the view that both glutamine and 2-oxoglutarate are major precursors of the transmitter pool of glutamate throughout the rat brain, but their relative contributions toward replenishing the transmitter pool of GABA are less certain.
As inkjet printing technology is increasingly applied in a broader array of applications, careful characterization of its method of use is critical due to its inherent sensitivity. A common operational mode in inkjet technology known as drop-on-demand ejection is used as a way to deliver a controlled quantity of material to a precise location on a target. This method of operation allows ejection of individual or a sequence (burst) of drops based on a timed trigger event. This work presents an examination of sequences of drops as they are ejected, indicating a number of phenomena that must be considered when designing a drop-on-demand inkjet system. These phenomena appear to be driven by differences between the first ejected drop in a burst and those that follow it and result in a break-down of the linear relationship expected between driving amplitude and drop mass. This first drop, as quantified by high-speed videography and subsequent image analysis, can be different in morphology, trajectory, velocity, and volume from subsequent drops within a burst. These findings were confirmed orthogonally by both volume and mass measurement techniques which allowed quantitation down to single drops.
Adenosine transport by rat and guinea pig synaptosomes was studied to establish the basis for the marked differences in the potency of some transport inhibitors in these species. An analysis of transport kinetics in the presence and absence of nitrobenzylthioinosine (NBTI) using synaptosomes derived from several areas of rat and guinea pig brain indicated that at least three systems contributed to adenosine uptake, the Km values of which were approximately 0.4, 3, and 15 microM in both species. In both species, the system with the Km of 3 microM was potently (IC50 of approximately 0.3 nM) and selectively inhibited by NBTI. This NBTI-sensitive system accounted for a greater proportion of the total uptake in the guinea pig than in the rat and was inhibited by dipyridamole, mioflazine, and related compounds more potently in the guinea pig. Preliminary experiments with other species indicate that adenosine transport in the mouse is similar to that in the rat, whereas in the dog and rabbit, it is more like that in the guinea pig. In the rat, none of the systems appeared to require Na+, but the two systems possessing the higher affinities for adenosine were inhibited by veratridine- and K(+)-induced depolarization. The transport systems were active over a broad pH range, with maximal activity between pH 6.5 and 7.0. Our results are consistent with the possibility that adenosine transport systems may be differentiated into uptake and release systems.
A set of procedures was developed to study the binding of gamma-[3H]aminobutyric acid ([3H]GABA) to GABAA and GABAB receptors, and to the Na(+)-dependent transport carrier, at 25 and 37 degrees C in the presence of physiological concentrations of Na+. The membrane preparation used in these procedures was not subjected to freeze-thawing or treatment with Triton X-100. Isoguvacine, (-)-baclofen, and (-)-nipecotate were used to block selectively the binding to GABAA receptors, GABAB receptors, and the transport site, respectively. Analysis of the binding characteristics of [3H]GABA to the GABAA receptor suggested the existence of high-(KD less than 30 nM), middle- (KD = 100-500 nM), and low-affinity (KD greater than 5 microM) binding sites. However, the binding data in the middle-affinity region (100-1,000 nM) were often indicative of cooperativity. The affinity between GABA and the GABAA receptor was reduced modestly by increases in temperature and by the presence of Cl- at physiological concentrations. Binding to the GABAB receptor required Ca2+ and Cl-. Apparent binding to the transport carrier required both Na+ and Cl-. A comparison of Bmax values in three brain regions revealed an inverse relationship between the high-affinity site of the GABAA receptor and the transport binding site.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.