The hypocholesterolemic and anti-atherosclerotic mechanism by which soy may exert a beneficial effect remains unclear. Peroxisome-proliferator activated receptors (PPAR) are promiscuous nuclear receptors that regulate the transcription of genes involved in lipid and glucose homeostasis and lipid metabolism within the cell. We hypothesize that the isoflavones improve lipid and glucose metabolism by acting as an antidiabetic PPAR agonist. Male and female obese Zucker rats (OZR) were used as a model of Type 2 diabetes, and OZR fed a high isoflavone soy protein diet displayed improvements in lipid metabolism consistent with results in humans treated with antidiabetic PPAR agonists such as the fibrates or glitazones. Liver triglyceride and cholesterol concentrations were lower in all OZR fed high-isoflavone soy protein diets than in rats fed low-isoflavone and casein diets (P < 0.05). Concurrently, PPAR-directed gene expression was evaluated in a cell culture model. An isoflavone-containing soy extract doubled PPAR-directed gene expression (P < 0.05) in RAW 264.7 cells containing either a PPARalpha or PPARgamma expression plasmid. A similar induction was observed when the soy isoflavones genistein or daidzein were used to treat cells. Both isoflavones doubled PPARalpha-directed gene expression (P < 0.05), whereas they increased PPARgamma-directed gene expression 200-400% (P < 0.05). This study suggests that soy isoflavones improve lipid metabolism, produce an antidiabetic effect, and activate PPAR receptors.
Individuals exhibiting "the metabolic syndrome" have multiple coronary artery disease risk factors, including insulin resistance, hyperlipidemia, hypertension, and android obesity. We performed a randomized trial to compare the effects of aerobic and resistance training regimens on coronary risk factors. Twenty-six volunteers who exhibited android obesity and at least one other risk factor for coronary artery disease were randomized to aerobic or resistance training groups. Body mass index, waist-to-hip ratio, glucose, insulin, body composition, 24-hr urinary albumin, fibrinogen, blood pressure, and lipid profile were measured at baseline and after 10 weeks of exercise training. Both groups showed a significant reduction in waist-to-hip ratio and the resistance training group also showed a reduction in total body fat. There was no significant change in mean arterial blood pressure in either group. Fasting plasma glucose, insulin, total cholesterol, low-density lipoprotein (LDL) cholesterol, and triglycerides were unchanged in both groups. High-density lipoprotein (HDL) cholesterol increased (13%) with aerobic training only. Plasma fibrinogen was increased (28% and 34%, P < 0.02) in both groups and both groups showed a significant decrease (34% and 28%, P < 0.03) in microalbuminuria after their respective training regimen. In conclusion, resistance training was effective in improving body composition of middle-aged obese sedentary males. Only aerobic training was effective in raising HDL cholesterol. More studies are warranted to assess the effects of exercise on plasma fibrinogen and microalbuminuria.
Soy products contain isoflavones (genistein, daidzein, and glycitein) that display biological effects when ingested by humans and animals, these effects are species, dose and age dependent. Therefore, the content and quality of isoflavones in soybeans is a key to their biological effect. Our objective was to identify loci that underlie isoflavone content in soybean seeds. The study involved 100 recombinant inbred lines (RIL) from the cross of 'Essex' by 'Forrest,' two cultivars that contrast for isoflavone content. Isoflavone content of seeds from each RIL was determined by high performance liquid chromatography (HPLC). The distribution of isoflavone content was continuous and unimodal. The heritability estimates on a line mean basis were 79% for daidzein, 22% for genistein, and 88% for glycitein. Isoflavone content of soybean seeds was compared against 150 polymorphic DNA markers in a one-way analysis of variance. Four genomic regions were found to be significantly associated with the isoflavone content of soybean seeds across both locations and years. Molecular linkage group B1 contained a major QTL underlying glycitein content (P = 0.0001, R 2 = 50.2%), linkage group N contained a QTL for glycitein (P = 0.0033, R 2 = 11.1%) and a QTL for daidzein (P = 0.0023, R 2 = 10.3%) and linkage group A1 contained a QTL for daidzein (P = 0.0081, R 2 = 9.6%). Selection for these chromosomal regions in a marker assisted selection program will allow for the manipulation of amounts and profiles of isoflavones (genistein, daidzein, and glycitein) content of soybean seeds. In addition, tightly linked markers can be used in map based cloning of genes associated with isoflavone content.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.