Dishevelled (Dsh) is a cytoplasmic multidomain protein that is required for all known branches of the Wnt signalling pathway1–3. The Frizzled/planar cell polarity (Fz/PCP) signalling branch requires an asymmetric cortical localization of Dsh, but this process remains poorly understood. Using a genome-wide RNA interference (RNAi) screen in Drosophila melanogaster cells, we show that Dsh membrane localization is dependent on the Na+/H+ exchange activity of the plasma membrane exchanger Nhe2. Manipulating Nhe2 expression levels in the eye causes PCP defects, and Nhe2 interacts genetically with Fz. Our data show that the binding and surface recruitment of Dsh by Fz is pH- and charge-dependent. We identify a polybasic stretch within the Dsh DEP domain that binds to negatively charged phospholipids and appears to be mechanistically important. Dsh recruitment by Fz can be abolished by converting these basic amino-acid residues into acidic ones, as in the mutant, DshKR/E. In vivo, the DshKR/E(2×) mutant with two substituted residues fails to associate with the membrane during active PCP signalling but rescues canonical Wnt signalling defects in a dsh-background. These results suggest that direct interaction between Fz and Dsh is stabilized by a pH and charge-dependent interaction of the DEP domain with phospholipids. This stabilization is particularly important for the PCP signalling branch and, thus, promotes specific pathway selection in Wnt signalling.
After wounding in zebrafish, osmolarity differences between the interstitial fluid and the external environment trigger ATP release that initiates rapid wound closure through long-range activation of basal epithelial cell motility.
Frizzled/planar cell polarity (PCP) signaling regulates cell motility in several tissues, including ommatidial rotation in Drosophila melanogaster. The Nemo kinase has also been linked to cell motility regulation and ommatidial rotation. The mechanistic role(s) of Nemo during rotation remain however obscure. We demonstrate that nemo functions throughout the entire rotation movement promoting rate of rotation. Genetic and molecular studies indicate that Nemo binds both the core PCP factor complex of Strabismus–Prickle, and the E-cadherin–β-catenin (Armadillo) complex, which colocalize and like Nemo also promote rotation. Strabismus/Vang binds and stabilizes Nemo asymmetrically within the ommatidial precluster. Nemo and β-catenin then act synergistically promoting rotation, which is mediated in vivo through Nemo phosphorylation of β-catenin. Our data suggest that Nemo serves as a conserved molecular link between core PCP factors and E-cad/β-catenin complexes, promoting ommatidial rotation and cell motility in general.
Missense mutations in the PTPN11 gene, which encodes the protein tyrosine phosphatase SHP-2, cause clinically similar but distinctive disorders, LEOPARD (LS) and Noonan (NS) syndromes. The LS is an autosomal dominant disorder with pleomorphic developmental abnormalities including lentigines, cardiac defects, short stature and deafness. Biochemical analyses indicated that LS alleles engender loss-of-function (LOF) effects, while NS mutations result in gain-of-function (GOF). These biochemical findings lead to an enigma that how PTPN11 mutations with opposite effects on function result in disorders that are so similar. To study the developmental effects of the commonest LS PTPN11 alleles (Y279C and T468M), we generated LS transgenic fruitflies using corkscrew (csw), the Drosophila orthologue of PTPN11. Ubiquitous expression of the LS csw mutant alleles resulted in ectopic wing veins and, for the Y279C allele, rough eyes with increased R7 photoreceptor numbers. These were GOF phenotypes mediated by increased RAS/MAPK signaling and requiring the LS mutant's residual phosphatase activity. Our findings provide the first evidence that LS mutant alleles have GOF developmental effects despite reduced phosphatase activity, providing a rationale for how PTPN11 mutations with GOF and LOF produce similar but distinctive syndromes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.