Several targets are described that in simulations give yields of 1–30 MJ when indirectly driven by 0.9–2 MJ of 0.35 μm laser light. The article describes the targets, the modeling that was used to design them, and the modeling done to set specifications for the laser system in the proposed National Ignition Facility. Capsules with beryllium or polystyrene ablators are enclosed in gold hohlraums. All the designs utilize a cryogenic fuel layer; it is very difficult to achieve ignition at this scale with a noncryogenic capsule. It is necessary to use multiple bands of illumination in the hohlraum to achieve sufficiently uniform x-ray irradiation, and to use a low-Z gas fill in the hohlraum to reduce filling of the hohlraum with gold plasma. Critical issues are hohlraum design and optimization, Rayleigh–Taylor instability modeling, and laser–plasma interactions.
Recent results are presented from two-dimensional LASNEX [G. B. Zimmerman and W. L. Kruer, Comments Plasmas Phys. Controlled Thermonucl. Fusion 2, 51 (1975)] calculations of the indirectly driven hohlraum and ignition capsules proposed for the National Ignition Facility (NIF). The calculations concentrate on two capsule designs, the baseline design that has a bromine-doped plastic ablator, and the beryllium design that has a copper-doped beryllium ablator. Both capsules have a cryogenic fuel layer. Primary emphasis in these calculations is placed upon robustness studies detailing various sensitivities. Because of computer modeling limitations these studies fall into two categories: those performed with integrated modeling where the capsule, hohlraum, and laser rays all are modeled simultaneously with the laser power levels as the only energy input; and those performed in a capsule-only mode where an externally imposed radiative flux is applied to the exterior of the capsule, and only the capsule performance is modeled. Integrated modeling calculations address sensitivities to, e.g., the laser pointing; among other things, capsule-only calculations address yield degradation due to the growth of hydrodynamic instabilities seeded by initial surface roughnesses on the capsules. Limitations of the calculational models and directions for future research are discussed. The results of the robustness studies performed to date enhance the authors’ confidence that the NIF can achieve ignition and produce 10–15 MJ of capsule yield with one or more capsule designs.
Abstract. Special Nova hohlraums have been designed to simulate the plasma conditions calculated for various N E hohlraum point designs. These hohlfaums attempt to maximize the laser pathlength for parametric instability measurements. A toroidal-shaped hohlraum with a diameter of 3200 microns and a length of 1600 microns allows a laser pathlength of about 2 mm. Filling the hohlraum with 1 atmosphere of neopentane gas gives an electron temperature of 3 keV and electron density near 0.1 of critical. Detailed LASNEX calculations for these hohlraums and compariscms to the NIF point design will be presented. Comparisons between data and calculations that characterize the plasma conditions (electron, radiation, and ion temperatures, electron density, etc) in these Nova hohlraums will also be shown. *This work supported under USDOE contract W-7405-ENG-36
This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. ! DISCLAIMER Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.