We performed photometric observations of the binary near-Earth asteroid (65803) Didymos in support of the Double Asteroid Redirection Test (DART) mission that will test the Kinetic Impactor technology for diverting dangerous asteroids. It will hit the Didymos secondary, called Dimorphos, on 2022 September 26. We observed Didymos with 11 telescopes with diameters from 3.5 to 10.4 m during four apparitions in 2015–2021, obtaining data with rms residuals from 0.006 to 0.030 mag. We analyzed the light-curve data and decomposed them into the primary rotational and secondary orbital light curves. We detected 37 mutual eclipse/occultation events between the binary system components. The data presented here, in combination with 18 mutual events detected in 2003, provide the basis for modeling the Dimorphos orbit around the Didymos primary. The orbit modeling is discussed in detail by Scheirich & Pravec and Naidu et al. The primary light curves were complex, showing multiple extrema on some epochs. They suggest a presence of complex topography on the primary’s surface that is apparent in specific viewing/illumination geometries; the primary shape model by Naidu et al. (Icarus 348, 113777, 2020) needs to be refined. The secondary rotational light-curve data were limited and did not provide a clear solution for the rotation period and equatorial elongation of Dimorphos. We define the requirements for observations of the secondary light curve to provide the needed information on Dimorphos’s rotation and elongation when Didymos is bright in 2022 July–September before the DART impact.
Centaurs are minor planets thought to have originated in the outer solar system region known as the Kuiper Belt. Active Centaurs enigmatically display comet-like features (e.g., tails, comae) even though they orbit in the gas giant region where it is too cold for water to readily sublimate. Only 18 active Centaurs have been identified since 1927 and, consequently, the underlying activity mechanism(s) have remained largely unknown up to this point. Here we report the discovery of activity emanating from Centaur 2014 OG392, based on archival images we uncovered plus our own new observational evidence acquired with the Dark Energy Camera (Cerro Tololo Inter-American Observatory Blanco 4 m telescope), the Inamori-Magellan Areal Camera & Spectrograph (Las Campanas Observatory 6.5 m Walter Baade Telescope), and the Large Monolithic Imager (Lowell Observatory 4.3 m Discovery Channel Telescope). We detect a coma as far as 400,000 km from 2014 OG392, and our novel analysis of sublimation processes and dynamical lifetime suggest carbon dioxide and/or ammonia are the most likely candidates for causing activity on this and other active Centaurs. We find 2014 OG392 is optically red, but CO2 and NH3 are spectrally neutral in this wavelength regime so the reddening agent is as yet unidentified.
Among the outer solar system minor planet orbits there is an observed gap in perihelion between roughly 50 and 65 au at eccentricities e ≳ 0.65. Through a suite of observational simulations, we show that the gap arises from two separate populations, the Extreme Trans-Neptunian Objects (ETNOs; perihelia q ≳ 40 au and semimajor axes a ≳ 150 au) and the Inner Oort Cloud objects (IOCs; q ≳ 65 au and a ≳ 250 au), and is very unlikely to result from a realistic single, continuous distribution of objects. We also explore the connection between the perihelion gap and a hypothetical distant giant planet, often referred to as Planet 9 or Planet X, using dynamical simulations. Some simulations containing Planet X produce the ETNOs, the IOCs, and the perihelion gap from a simple Kuiper-Belt-like initial particle distribution over the age of the solar system. The gap forms as particles scattered to high eccentricity by Neptune are captured into secular resonances with Planet X where they cross the gap and oscillate in perihelion and eccentricity over hundreds of kiloyears. Many of these objects reach a minimum perihelia in their oscillation cycle within the IOC region increasing the mean residence time of the IOC region by a factor of approximately five over the gap region. Our findings imply that, in the presence of a massive external perturber, objects within the perihelion gap will be discovered, but that they will be only ∼20% as numerous as the nearby IOC population (65 au ≲ q ≲ 100 au).
The Vera C. Rubin Observatory is expected to start the Legacy Survey of Space and Time (LSST) in early to mid-2025. This multiband wide-field synoptic survey will transform our view of the solar system, with the discovery and monitoring of over five million small bodies. The final survey strategy chosen for LSST has direct implications on the discoverability and characterization of solar system minor planets and passing interstellar objects. Creating an inventory of the solar system is one of the four main LSST science drivers. The LSST observing cadence is a complex optimization problem that must balance the priorities and needs of all the key LSST science areas. To design the best LSST survey strategy, a series of operation simulations using the Rubin Observatory scheduler have been generated to explore the various options for tuning observing parameters and prioritizations. We explore the impact of the various simulated LSST observing strategies on studying the solar system’s small body reservoirs. We examine what are the best observing scenarios and review what are the important considerations for maximizing LSST solar system science. In general, most of the LSST cadence simulations produce ±5% or less variations in our chosen key metrics, but a subset of the simulations significantly hinder science returns with much larger losses in the discovery and light-curve metrics.
We report that object 282P/(323137) 2003 BM80 is undergoing a sustained activity outburst, lasting over 15 months thus far. These findings stem in part from our NASA Partner Citizen Science project Active Asteroids (http://activeasteroids.net), which we introduce here. We acquired new observations of 282P via our observing campaign (Vatican Advanced Technology Telescope (VATT), Lowell Discovery Telescope (LDT), and the Gemini South telescope), confirming 282P was active on UT 2022 June 7, some 15 months after 2021 March images showed activity in the 2021–2022 epoch. We classify 282P as a member of the quasi-Hilda objects (QHOs), a group of dynamically unstable objects found in an orbital region similar to, but distinct in their dynamical characteristics to, the Hilda asteroids (objects in 3:2 resonance with Jupiter). Our dynamical simulations show 282P has undergone at least five close encounters with Jupiter and one with Saturn over the last 180 yr. 282P was most likely a Centaur or Jupiter-family comet (JFC) 250 yr ago. In 350 yr, following some 15 strong Jovian interactions, 282P will most likely migrate to become a JFC or, less likely, an outer main-belt asteroid orbit. These migrations highlight a dynamical pathway connecting Centaurs and JFCs with quasi-Hildas and, potentially, active asteroids. Synthesizing these results with our thermodynamical modeling and new activity observations, we find volatile sublimation is the primary activity mechanism. Observations of a quiescent 282P, which we anticipate will be possible in 2023, will help confirm our hypothesis by measuring a rotation period and ascertaining the spectral type.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.