Summary
Immune cells function in diverse metabolic environments. Tissues with low glucose and high lactate concentrations, such as the intestinal tract or ischemic tissues, frequently require immune responses to be more pro-tolerant avoiding unwanted reactions against self-antigens or commensal bacteria. T-regulatory cells (Treg) maintain peripheral tolerance, but how Treg function in low glucose lactate rich environments is unknown. We report that the Treg transcription factor Foxp3 reprograms T cell metabolism by suppressing Myc and glycolysis, enhancing oxidative phosphorylation, and increasing nicotinamide adenine dinucleotide oxidation. These adaptations allow Treg a metabolic advantage in low glucose, lactate rich environments; resisting lactate mediated suppression of T cell function and proliferation. This metabolic phenotype may explain how Tregs promote peripheral immune tolerance during tissue injury, but also how cancer cells evade immune destruction in the tumor microenvironment. Understanding Treg metabolism may therefore lead to novel approaches for selective immune modulation in cancer and autoimmune diseases.
The redox cofactor nicotinamide adenine dinucleotide (NAD) plays a central role in metabolism and is a substrate for signaling enzymes including poly-ADP-ribose-polymerases (PARPs) and sirtuins. NAD concentration falls during aging, which has triggered intense interest in strategies to boost NAD levels. A limitation in understanding NAD metabolism has been reliance on concentration measurements. Here, we present isotope-tracer methods for NAD flux quantitation. In cell lines, NAD was made from nicotinamide and consumed largely by PARPs and sirtuins. In vivo, NAD was made from tryptophan selectively in the liver, which then excreted nicotinamide. NAD fluxes varied widely across tissues, with high flux in the small intestine and spleen and low flux in the skeletal muscle. Intravenous administration of nicotinamide riboside or mononucleotide delivered intact molecules to multiple tissues, but the same agents given orally were metabolized to nicotinamide in the liver. Thus, flux analysis can reveal tissue-specific NAD metabolism.
Summary
NAD is an obligate co-factor for the catabolism of metabolic fuels in all cell types. However, the availability of NAD in several tissues can become limited during genotoxic stress and the course of natural aging. The point at which NAD restriction imposes functional limitations on tissue physiology remains unknown. We examined this question in murine skeletal muscle by specifically deleting Nampt, an essential enzyme in the NAD salvage pathway. Knockout mice exhibited a dramatic 85% decline in intramuscular NAD content, accompanied by fiber degeneration and progressive loss of both muscle strength and treadmill endurance. Administration of the NAD precursor nicotinamide riboside rapidly ameliorated functional deficits and restored muscle mass, despite having only a modest effect on the intramuscular NAD pool. Additionally, lifelong overexpression of Nampt preserved muscle NAD levels and exercise capacity in aged mice, supporting a critical role for tissue-autonomous NAD homeostasis in maintaining muscle mass and function.
Yu and Richardson et al. find that restriction of dietary isoleucine or valine promotes metabolic health in mice and that restriction of dietary isoleucine is required for the metabolic benefits of a low-protein diet. Furthermore, higher dietary isoleucine levels are associated with increased BMI in humans.
Summary
Insulin-resistant syndromes such as type II diabetes mellitus (T2DM) involve disrupted temporal coordination of hepatic metabolism such that synthesis and secretion of lipid and glucose are inappropriately engaged concurrently. Here we test the hypothesis that a combination of direct and indirect actions of insulin on liver can lead to the metabolic phenotype exhibited in T2DM without a defect in proximal hepatic insulin signaling. First, we show that the insulin-dependent inhibition of Foxo1 and activation of mTorc1 by Akt is both necessary and sufficient for the induction of lipogenesis and the lipogenic gene program. In marked contrast, insulin, acting in vivo independent of hepatocyte insulin signaling can suppress glucose production by reducing serum free fatty acids. These studies support the hypothesis that under conditions of obesity and diabetes, intact hepatic insulin signaling can maintain lipogenesis while excess circulating FFAs become a dominant positive regulator of HGP.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.