Hepatitis C virus (HCV) is a major cause of chronic liver disease, with an estimated 170 million people infected worldwide. Low yields, poor stability, and inefficient binding to conventional EM grids have posed significant challenges to the purification and structural analysis of HCV. In this report, we generated an infectious HCV genome with an affinity tag fused to the E2 envelope glycoprotein. Using affinity grids, previously described to isolate proteins and macromolecular complexes for single-particle EM, we were able to purify enveloped particles directly from cell culture media. This approach allowed for rapid in situ purification of virions and increased particle density that were instrumental for cryo-EM and cryoelectron tomography (cryo-ET). Moreover, it enabled ultrastructural analysis of virions produced by primary human hepatocytes. HCV appears to be the most structurally irregular member of the Flaviviridae family. Particles are spherical, with spike-like projections, and heterogeneous in size ranging from 40 to 100 nm in diameter. Exosomes, although isolated from unfractionated culture media, were absent in highly infectious, purified virus preparations. Cryo-ET studies provided low-resolution 3D structural information of highly infectious virions. In addition to apolipoprotein (apo)E, HCV particles also incorporate apoB and apoA-I. In general, host apolipoproteins were more readily accessible to antibody labeling than HCV glycoproteins, suggesting either lower abundance or masking by host proteins.enveloped virus | hepacivirus | lipoviral particle | virus structure | virus assembly H epatitis C virus (HCV) is an important human pathogen that infects the liver and establishes chronic infection in the majority of cases, leading to cirrhosis and hepatocellular carcinoma (HCC) over the course of many years. More than 170 million people, ∼3% of the world's population, have been infected with HCV. Each year, 4-5% of patients with HCVinduced cirrhosis develop HCC, making HCV infection the leading indicator for liver transplantation in many areas of the world (1). Surgery, however, does not provide a cure because the donor organ universally becomes reinfected. A prophylactic vaccine is not available and despite the recent addition of HCV-specific protease inhibitors to the pegylated (peg)-IFN and ribavirin regimen, which has increased the cure rate, better therapies are still needed to solve the emergence of resistant variants, severe side effects and suboptimal response rates in cirrhotic patients (2).HCV is a single-stranded, positive-sense RNA virus in the family Flaviviridae. The HCV genome is ∼9.6 kb in length and encodes a long polyprotein of more than 3000 amino acids that is proteolytically processed to generate 10 mature viral proteins. Viral structural proteins are encoded by the first third of the polyprotein and include core or capsid protein (C) and the envelope glycoproteins E1 and E2. p7 (a viroporin) and nonstructural proteins, encoded by the C-terminal two-thirds of the polyprotein, pla...
Leginon is a system for automated data acquisition from a transmission electron microscope. Here we provide an updated summary of the overall Leginon architecture and an update of the current state of the package. We also highlight a few recent developments to provide some concrete examples and use cases.
Single particle cryo-electron microscopy (cryoEM) is often performed under the assumption that particles are freely floating away from the air-water interfaces and in thin, vitreous ice. In this study, we performed fiducial-less tomography on over 50 different cryoEM grid/sample preparations to determine the particle distribution within the ice and the overall geometry of the ice in grid holes. Surprisingly, by studying particles in holes in 3D from over 1,000 tomograms, we have determined that the vast majority of particles (approximately 90%) are adsorbed to an air-water interface. The implications of this observation are wide-ranging, with potential ramifications regarding protein denaturation, conformational change, and preferred orientation. We also show that fiducial-less cryo-electron tomography on single particle grids may be used to determine ice thickness, optimal single particle collection areas and strategies, particle heterogeneity, and de novo models for template picking and single particle alignment.Contributions:
All Microsporidia share a unique, extracellular spore stage, containing the infective sporoplasm and the apparatus for initiating infection. The polar filament/polar tube when exiting the spore, transports the sporoplasm through it into a host cell. While universal, these structures and processes have been enigmatic. This study utilized several types of microscopy, describing and extending our understanding of these structures and their functions. Cryogenically preserved polar tubes vary in diameter from 155 to over 200nm, noticeably larger than fixed-sectioned, or negatively stained samples. The polar tube surface is pleated and covered with fine fibrillar material that projects from the surface and is organized in clusters or tufts. These fibrils may be the sites of glycoproteins providing protection and aiding infectivity. The polar tube surface is ridged with 5-6nm spacing between ridges, enabling the polar tube to rapidly increase its diameter to facilitate the passage of the various cargo including cylinders, sacs or vesicles filled with particulate material and the intact sporoplasm containing a diplokaryon. The lumen of the tube is lined with a membrane that facilitates this passage. Careful examination of the terminus of the tube indicates that it has a closed tip where the membranes for the terminal sac are located.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.