In mammals there are at least 10 isoforms of diacylglycerol kinases (DGK). All catalyze the phosphorylation of diacylglycerol (DAG) to phosphatidic acid (PA). Among DGK isoforms, DGKε has several unique features. It is the only DGK isoform with specificity for a particular species of DAG, i.e., 1-stearoyl-2-arachidonoyl glycerol. The smallest of all known DGK isoforms, DGKε, is also the only DGK devoid of a regulatory domain. DGKε is the only DGK isoform that has a hydrophobic segment that is predicted to form a transmembrane helix. As the only membrane-bound, constitutively active DGK isoform with exquisite specificity for particular molecular species of DAG, the functional overlap between DGKε and other DGKs is predicted to be minimal. DGKε exhibits specificity for DAG containing the same acyl chains as those found in the lipid intermediates of the phosphatidylinositol-cycle. It has also been shown that DGKε affects the acyl chain composition of phosphatidylinositol in whole cells. It is thus likely that DGKε is responsible for catalyzing one step in the phosphatidylinositol-cycle. Steps of this cycle take place in both the plasma membrane and the endoplasmic reticulum membrane. DGKε is likely present in both of these membranes. DGKε is the only DGK isoform that is associated with a human disease. Indeed, recessive loss-of-function mutations in DGKε cause atypical hemolytic-uremic syndrome (aHUS). This condition is characterized by thrombosis in the small vessels of the kidney. It causes acute renal insufficiency in infancy and most patients develop end-stage renal failure before adulthood. Disease pathophysiology is poorly understood and there is no therapy. There are also data suggesting that DGKε may play a role in epilepsy and Huntington disease. Thus, DGKε has many unique molecular and biochemical properties when compared to all other DGK isoforms. DGKε homologs also contain a number of conserved sequence features that are distinctive characteristics of either the rodents or specific groups of primate homologs. How cells, tissues and organisms harness DGKε's catalytic prowess remains unclear. The discovery of DGKε's role in causing aHUS will hopefully boost efforts to unravel the mechanisms by which DGKε dysfunction causes disease.
Edited by Paul E. FraserSignaling events at membranes are often mediated by membrane lipid composition or membrane physical properties. These membrane properties could act either by favoring the membrane binding of downstream effectors or by modulating their activity. Several proteins can sense/generate membrane physical curvature (i.e. shape). However, the modulation of the activity of enzymes by a membrane's shape has not yet been reported. Here, using a cell-free assay with purified diacylglycerol kinase ⑀ (DGK⑀) and liposomes, we studied the activity and acyl-chain specificity of an enzyme of the phosphatidylinositol (PI) cycle, DGK⑀. By systematically varying the model membrane lipid composition and physical properties, we found that DGK⑀ has low activity and lacks acyl-chain specificity in locally flat membranes, regardless of the lipid composition. On the other hand, these enzyme properties were greatly enhanced in membrane structures with a negative Gaussian curvature. We also found that this is not a consequence of preferential binding of the enzyme to those structures, but rather is due to a curvature-mediated allosteric regulation of DGK⑀ activity and acylchain specificity. Moreover, in a fine-tuned interplay between the enzyme and the membrane, DGK⑀ favored the formation of structures with greater Gaussian curvature. DGK⑀ does not bear a regulatory domain, and these findings reveal the importance of membrane curvature in regulating DGK⑀ activity and acyl-chain specificity. Hence, this study highlights that a hierarchic coupling of membrane physical property and lipid composition synergistically regulates membrane signaling events. We propose that this regulatory mechanism of membrane-associated enzyme activity is likely more common than is currently appreciated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.