Although Locality-Sensitive Hashing (LSH) is a promising approach to similarity search in high-dimensional spaces, it has not been considered practical partly because its search quality is sensitive to several parameters that are quite data dependent. Previous research on LSH, though obtained interesting asymptotic results, provides little guidance on how these parameters should be chosen, and tuning parameters for a given dataset remains a tedious process.To address this problem, we present a statistical performance model of Multi-probe LSH, a state-of-the-art variance of LSH. Our model can accurately predict the average search quality and latency given a small sample dataset. Apart from automatic parameter tuning with the performance model, we also use the model to devise an adaptive LSH search algorithm to determine the probing parameter dynamically for each query. The adaptive probing method addresses the problem that even though the average performance is tuned for optimal, the variance of the performance is extremely high. We experimented with three different datasets including audio, images and 3D shapes to evaluate our methods. The results show the accuracy of the proposed model: the recall errors predicted are within 5% from the real values for most cases; the adaptive search method reduces the standard deviation of recall by about 50% over the existing method.
The past decade has been marked by the (continued) explosion of diverse data content and the fast development of intelligent data analytics techniques. One problem we identified in the mid-2000s was similarity search of feature-rich data. The challenge here was achieving both high accuracy and high efficiency in high-dimensional spaces. Locality sensitive hashing (LSH), which uses certain random space partitions and hash table lookups to find approximate nearest neighbors, was a promising approach with theoretical guarantees. But LSH alone was insufficient since a large number of hash tables were required to achieve good search quality. Building on an idea of Panigrahy, our multi-probe LSH method introduced the idea of intelligent probing. Given a query object, we strategically probe its neighboring hash buckets (in a query-dependent fashion) by calculating the statistical probabilities of similar objects falling into each bucket. Such intelligent probing can significantly reduce the number of hash tables while achieving high quality. In this paper, we revisit the problem motivation, the challenges, the key design considerations of multi-probe LSH, as well as discuss recent developments in this space and some questions for further research.
Ferret is a toolkit for building content-based similarity search systems for feature-rich data types such as audio, video, and digital photos. The key component of this toolkit is a content-based similarity search engine for generic, multifeature object representations. This paper describes the filtering mechanism used in the Ferret toolkit and experimental results with several datasets. The filtering mechanism uses approximation algorithms to generate a candidate set, and then ranks the objects in the candidate set with a more sophisticated multi-feature distance measure. The paper compared two filtering methods: using segment feature vectors and sketches constructed from segment feature vectors. Our experimental results show that filtering can substantially speedup the search process and reduce memory requirement while maintaining good search quality. To help systems designers choose the filtering parameters, we have developed a rank-based analytical model for the filtering algorithm using sketches. Our experiments show that the model gives conservative and good prediction for different datasets.
Building content-based search tools for feature-rich data has been a challenging problem because feature-rich data such as audio recordings, digital images, and sensor data are inherently noisy and high dimensional. Comparing noisy data requires comparisons based on similarity instead of exact matches, and thus searching for noisy data requires similarity search instead of exact search.The Ferret toolkit is designed to help system builders quickly construct content-based similarity search systems for feature-rich data types. The key component of the toolkit is a content-based similarity search engine for generic, multifeature object representations. To solve the similarity search problem in high-dimensional spaces, we have developed approximation methods inspired by recent theoretical results on dimension reduction. The search engine constructs sketches from feature vectors as highly compact data structures for matching, filtering and ranking data objects. The toolkit also includes several other components to help system builders address search system infrastructure issues. We have implemented the toolkit and used it to successfully construct content-based similarity search systems for four data types: audio recordings, digital photos, 3D shape models and genomic microarray data.
Abstract. CorSSO is a distributed service for authentication in networks. It allows application servers to delegate client identity checking to combinations of authentication servers that reside in separate administrative domains. CorSSO authentication policies enable the system to tolerate expected classes of attacks and failures. A novel partitioning of the work associated with authentication of principals means that the system scales well with increases in the numbers of users and services.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.