A method for risk-based design under high stress conditions is described in this paper. Probabilistic methods of analysis are applied to stress modelling to determine the probability of exceeding a given depth of failure. Suggestions are provided for dealing with geotechnical uncertainty. The understanding of aleatory variability can be improved by collecting more data and improving the quality of data through training and quality control. Stress and model uncertainty remain a challenge in geotechnical engineering. Some degree of subjective engineering judgement will therefore always be required in geotechnical design. An economic risk model is used to determine the frequency and severity of the consequences of stress damage. The cost of rehabilitation of tunnels and the financial losses due to lost production are assessed using the model. A typical risk matrix is used to evaluate the level of risk. Different types of excavations have different risk profiles based on the potential impact on production. The design engineer can use the model to determine design criteria for stress damage. The risk can be mitigated through improved support or by changing the mining layout. These measures both have financial implications and the economic risk model is useful for decision making. A brief discussion on risk-based design criteria for rockbursts is also included.
In selecting a suitable method to sink a vertical shaft for underground access, a number of constraints influence the ultimate decision of where and how to develop the shaft, not least among these being safety, development and construction time, and cost. Two additional considerations stand out: these being geotechnical conditions and technology, the latter taking into account existing underground access. Assuming a project for which an existing underground excavation is available, it is tempting to build a shaft sinking project from the outset based on the raiseboring method, which has the potential to be the safest, fastest, and least expensive method provided that geotechnical conditions permit. And therein lies the rub: regardless of project time or cost constraints, when it comes to raiseboring a long (say, greater than 500 m), large diameter (greater than 4.5 m) shaft, the rock mass conditions ultimately dictate what method of shaft sinking will be feasible. Over the course of several studies for a particular project, several geotechnical analyses were carried out specifically for the purpose of developing a shaft by raiseboring. Risk analysis and experience showed that where the rock mass conditions indicated an unacceptably high risk potential, an alternative method needed to be considered, even if this meant increasing both the time and financial requirements. In this paper we present an overview of geotechnical investigation practices for shaft sinking. Decisionmaking thresholds for raiseboring or other methods of shaft sinking are discussed, including probabilities of failure, empirical rock mass classification, basic wedge failure, and back-analysis of a failed case. The design of appropriate support, and analysis of relative safety benefits for various shaft sinking methods, falls outside the scope of this work, and will be presented in a separate paper.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.