We examined fifth-year seedling response to soil disturbance and vegetation control at 42 experimental locations representing 25 replicated studies within the North American Long-Term Soil Productivity (LTSP) program. These studies share a common experimental design while encompassing a wide range of climate, site conditions, and forest types. Whole-tree harvest had limited effects on planted seedling performance compared with the effects of stem-only harvest (the control); slight increases in survival were usually offset by decreases in growth. Forest-floor removal improved seedling survival and increased growth in Mediterranean climates, but reduced growth on productive, nutrient-limited, warmhumid sites. Soil compaction with intact forest floors usually benefited conifer survival and growth, regardless of climate or species. Compaction combined with forest-floor removal generally increased survival, had limited effects on individual tree growth, and increased stand growth in Mediterranean climates. Vegetation control benefited seedling growth in all treatments, particularly on more productive sites, but did not affect survival or alter the relative impact of organic matter removal and compaction on growth. Organic matter removal increased aspen coppice densities and, as with compaction, reduced aspen growth.
This study describes the main treatment effects of organic matter removal and compaction and a split-plot effect of competition control on mineral soil carbon (C) and nitrogen (N) pools. Treatment effects on soil C and N pools are discussed for 19 sites across five locations (British Columbia, Northern Rocky Mountains, Pacific Southwest, and Atlantic and Gulf coasts) that are part of the Long-Term Soil Productivity (LTSP) network and were established over 5 years ago. The sites cover a broad range of soil types, climatic conditions, and tree species. Most sites showed increased soil C and N levels 5 years after study establishment; however, the rate and magnitude of the changes varied between sites. Organic matter removal, compaction, or competition control did not significantly affect soil C and N contents at any site, except for the Northern Rocky Mountain site, where competition control significantly affected soil C and N contents. The observation that, after 5 years, the soil C and N contents were not negatively affected by even the extreme treatments demonstrates the high resiliency of the soil, at least in the short term, to forest management perturbations.Résumé : Cette étude décrit les effets de l'enlèvement de la matière organique et de la compaction du sol en parcelles principales ainsi que les effets du contrôle de la compétition en sous-parcelles sur les pools de carbone et d'azote dans le sol minéral. Les effets des traitements sur les pools de carbone et d'azote sont discutés pour 19 stations réparties dans cinq endroits (la Colombie-Britannique, les Rocheuses septentrionales, le Pacific Southwest, la côte de l'Atlantique et la côte du golfe du Mexique) qui font partie du réseau de productivité des sols à long terme et qui ont été établies il y a plus de 5 ans. Les stations couvraient une large gamme de types de sol, de conditions climatiques et d'espèces d'arbre. Les niveaux de carbone et d'azote dans le sol avaient augmenté dans la plupart des stations 5 ans après l'établissement de l'étude. Cependant, le taux et l'ampleur des changements variaient d'une station à l'autre. L'enlèvement de la matière organique, la compaction du sol ou le contrôle de la compétition n'ont pas significativement affecté le contenu en carbone et en azote du sol dans aucune des stations à l'exception de la station des Rocheuses septentrionales où le contrôle de la compétition a significativement affecté le contenu en carbone et en azote du sol. Le fait que le contenu en carbone et en azote du sol n'ait pas été affecté après 5 ans, même par les traitements extrêmes, démontre que le sol est hautement résilient, au moins à court terme, face aux perturbations causées par l'aménagement forestier.[Traduit par la Rédaction] Sanchez et al. 576
The growing demand for renewable, carbon-neutral materials and energy is leading to intensified forest land-use. The long-term ecological challenges associated with maintaining soil fertility in managed forests are not yet known, in part due to the complexity of soil microbial communities and the heterogeneity of forest soils. This study determined the long-term effects of timber harvesting, accompanied by varied organic matter (OM) removal, on bacterial and fungal soil populations in 11- to 17-year-old reforested coniferous plantations at 18 sites across North America. Analysis of highly replicated 16 S rRNA gene and ITS region pyrotag libraries and shotgun metagenomes demonstrated consistent changes in microbial communities in harvested plots that included the expansion of desiccation- and heat-tolerant organisms and decline in diversity of ectomycorrhizal fungi. However, the majority of taxa, including the most abundant and cosmopolitan groups, were unaffected by harvesting. Shifts in microbial populations that corresponded to increased temperature and soil dryness were moderated by OM retention, which also selected for sub-populations of fungal decomposers. Biogeographical differences in the distribution of taxa as well as local edaphic and environmental conditions produced substantial variation in the effects of harvesting. This extensive molecular-based investigation of forest soil advances our understanding of forest disturbance and lays the foundation for monitoring long-term impacts of timber harvesting.
Tuberculate mycorrhizae on Pinus contorta (lodgepole pine) have previously been shown to reduce acetylene, but an outstanding question has been to what degree these structures could meet the nitrogen requirements of the tree. We compared the growth, tissue nitrogen contents, and stable nitrogen isotope ratios of P. contorta growing in gravel pits to the same species growing on adjacent intact soil. Trees growing in severely nitrogen deficient gravel pits had virtually identical growth rates and tissue nitrogen contents to those growing on intact soil that had nitrogen levels typical for the area. δ15N values for trees in the gravel pits were substantially lower than δ15N values for trees on intact soil, and isotope ratios in vegetation were lower than the isotope ratios of the soil. The form of soil nitrogen in the gravel pits was almost exclusively nitrate, while ammonium predominated in the intact soil. Discrimination against 15N during plant uptake of soil nitrate in the highly N-deficient soil should be weak or nonexistent. Therefore, the low δ15N in the gravel pit trees suggests that trees growing in gravel pits were using another nitrogen source in addition to the soil. Precipitation-borne nitrogen in the study area is extremely low. In conjunction with our other work, these findings strongly suggests that P. contorta and its microbial symbionts or associates fix nitrogen in sufficient amounts to sustain vigorous tree growth on the most nitrogen-deficient soils.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.