Future spintronics technologies based on diluted magnetic semiconductors (DMSs) will rely heavily on a sound understanding of the microscopic origins of ferromagnetism in such materials. Discoveries of room-temperature ferromagnetism in wide-bandgap DMSs hold great promise, but this ferromagnetism remains poorly understood. Here we demonstrate a close link between the electronic structures and polarity-dependent high-TC ferromagnetism of TM(2+):ZnO DMSs, where TM(2+) denotes 3d transition metal ions. Trends in ferromagnetism across the 3d series of TM(2+):ZnO DMSs predicted from the energies of donor- and acceptor-type excited states reproduce experimental trends well. These results provide a unified basis for understanding both n- and p-type ferromagnetic oxide DMSs.
Electrical control over the magnetic states of doped semiconductor nanostructures could enable new spin-based information processing technologies. To this end, extensive research has recently been devoted to examination of carrier-mediated magnetic ordering effects in substrate-supported quantum dots at cryogenic temperatures, with carriers introduced transiently by photon absorption. The relatively weak interactions found between dopants and charge carriers have suggested that gated magnetism in quantum dots will be limited to cryogenic temperatures. Here, we report the observation of a large, reversible, room-temperature magnetic response to charge state in free-standing colloidal ZnO nanocrystals doped with Mn(2+) ions. Injected electrons activate new ferromagnetic Mn(2+)-Mn(2+) interactions that are strong enough to overcome antiferromagnetic coupling between nearest-neighbour dopants, making the full magnetic moments of all dopants observable. Analysis shows that this large effect occurs in spite of small pairwise electron-Mn(2+) exchange energies, because of competing electron-mediated ferromagnetic interactions involving distant Mn(2+) ions in the same nanocrystal.
We report the preparation and investigation of charged colloidal Co2+:ZnO and Mn2+:ZnO nanocrystals. Although both charged and magnetically doped colloidal semiconductor nanocrystals have been reported previously, colloidal charged and magnetically doped semiconductor nanocrystals as described herein have not. Conduction band electrons were introduced into colloidal ZnO diluted magnetic semiconductor (DMS) nanocrystals photochemically, and the resulting TM2+-e-CB interactions were observed by electron paramagnetic resonance spectroscopy (TM2+ = Co2+ or Mn2+). This new motif of colloidal charged magnetic semiconductor nanocrystals reveals attractive new opportunities for studying spin effects in DMS nanostructures relevant to proposed spintronics technologies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.