The ends of human chromosomes are protected from the degradation associated with cell division by 15-20 kb long segments of hexameric repeats of 5'-TTAGGG-3' termed telomeres. In normal cells telomeres lose up to 300 bp of DNA per cell division that ultimately leads to senescence; however, most cancer cells bypass this lifespan restriction through the expression of telomerase. hTERT, the catalytic subunit essential for the proper function of telomerase, has been shown to be expressed in approximately 90% of all cancers. In this study we investigated the hTERT inhibiting effects of (-)-epigallocatechin-3-gallate (EGCG), the major polyphenol found in green tea catechins, in MCF-7 breast cancers cells and HL60 promyelocytic leukemia cells. Exposure to EGCG reduced cellular proliferation and induced apoptosis in both MCF-7 and HL60 cells in vitro, although hTERT mRNA expression was decreased only in MCF-7 cells when treated with EGCG. Furthermore, down-regulation of hTERT gene expression in MCF-7 cells appeared to be largely due to epigenetic alterations. Treatment of MCF-7 cells with EGCG resulted in a time-dependent decrease in hTERT promoter methylation and ablated histone H3 Lys9 acetylation. In conjunction with demethylation, further analysis showed an increase in hTERT repressor E2F-1 binding at the promoter. From these findings, we propose that EGCG is effective in causing cell death in both MCF-7 and HL60 cancer cell lines and may work through different pathways involving both anti-oxidant effects and epigenetic modulation.
Nuclear hormone receptors comprise a characteristic family of transcription factors found in vertebrates, insects and nematodes. Here we show by cDNA and gene cloning that a Cnidarian, Tripedalia cystophora, possesses a retinoid receptor (jRXR) with remarkable homology to vertebrate retinoic acid X receptors (RXRs). Like vertebrate RXRs, jRXR binds 9-cis retinoic acid (K d ؍ 4 ؋ 10 ؊10 M) and binds to the DNA sequence, PuGGTCA as a monomer in vitro. jRXR also heterodimerizes with Xenopus TR beta on a thyroid responsive element of a direct repeat separated by 4 bp. A jRXR binding half-site capable of interacting with (His 6 )jRXR fusion protein was identified in the promoters of three T. cystophora crystallin genes that are expressed highly in the eye lens of this jellyfish. Because crystallin gene expression is regulated by retionoid signaling in vertebrates, the jellyfish crystallin genes are candidate in vivo targets for jRXR. Finally, an antibody prepared against (His 6 )jRXR showed that fulllength jRXR is expressed at all developmental stages of T. cystophora except the ephydra, where a smaller form replaces is. These data show that Cnidaria, a diploblastic phylum ancestral to the triploblastic invertebrate and subsequent vertebrate lineages, already have an RXR suggesting that RXR is an early component of the regulatory mechanisms of metazoa.
Retinoic acids and their derivatives potentiate anticancer effects in breast cancer cells. The aberrant expression of telomerase is critical to the continued proliferation of most cancer cells. Thus, telomerase is an attractive target for chemoprevention and treatment of breast cancer. 9cUAB30 is a novel synthetic retinoid X receptor-selective retinoic acid (RA) that effectively reduces the tumorigenic phenotype in mouse breast carcinoma with lower toxic effects than natural retinoid treatments. We have assessed 9cUAB30 retinoic acid treatment of human breast cancer cells to determine the potential of this drug as an effective telomerase inhibitor and its application to cancer therapy. 9cUAB30 was found to decrease DNA methyltransferase and telomerase expression in MDA-MB-361, T-47D, and MCF-7 human breast cancer cells and to inhibit the proliferation of these cells. This lowtoxicity retinoid also reduced colony formation in soft agar assays in each of these cell types. Combination treatments of 9cUAB30 and all-trans RA proved to be synergistically more effective than either RA alone, further suggesting a possible general epigenetic mechanism that contributes to the antitelomerase activity of the retinoids. Therefore, the novel retinoid, 9cUAB30, is effective in inhibiting the growth of human breast cancer cells, its anti-cancer effects appear to be related to telomerase inhibition and the mechanism for this process could be mediated through epigenetic modifications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.