The scarcity of transplant allografts for diseased organs has prompted efforts at tissue regeneration using seeded scaffolds, an approach hampered by the enormity of cell types and complex architectures. Our goal was to decellularize intact organs in a manner that retained the matrix signal for differentiating pluripotent cells. We decellularized intact rat kidneys in a manner that preserved the intricate architecture and seeded them with pluripotent murine embryonic stem cells antegrade through the artery or retrograde through the ureter. Primitive precursor cells populated and proliferated within the glomerular, vascular, and tubular structures. Cells lost their embryonic appearance and expressed immunohistochemical markers for differentiation. Cells not in contact with the basement membrane matrix became apoptotic, thereby forming lumens. These observations suggest that the extracellular matrix can direct regeneration of the kidney, and studies using seeded scaffolds may help define differentiation pathways.
We used quantitative PCR methods and renal microdissection to characterize the expression of inducible nitric oxide synthase (iNOS) mRNAs in rat kidney and cultured glomerular mesangial cells. A partial cDNA homologous to murine macrophage iNOS (macNOS), but distinct from rat vascular smooth muscle iNOS (vsmNOS), was cloned from normal rat kidney. macNOS was the principal iNOS isoform tonically expressed in microdissected glomeruli, proximal tubules, medullary thick ascending limbs (mTAL), cortical and inner medullary collecting ducts (IMCD), and cultured mesangial cells, whereas vsmNOS was the major isoform expressed in arcuate and interlobular arteries. Basal macNOS expression was greatest in mTALs and IMCDs. Restriction mapping of RT-PCR products indicated that basal expression of macNOS mRNA was comparable to that of vsmNOS in cortex, but greater than vsmNOS in outer and inner medulla. However, compared to controls, lipopolysaccharide (LPS)-treated rats exhibited a much greater proportion of vsmNOS mRNA and higher levels of total iNOS mRNA in each zone. Similarly, TNF alpha and IF-gamma preferentially induced expression of vsmNOS mRNA in cultured mesangial cells. We conclude that two iNOS isoforms are constitutively and heterogeneously expressed in the normal rat kidney, and that endotoxemia and cytokines differentially induce their expression.
There is increasing evidence of acidification along the entire mammalian collecting duct including the inner medullary collecting duct (IMCD). Recent studies have provided morphologic evidence that the intercalated cells are involved in hydrogen ion secretion in the cortical and outer medullary collecting duct of the rat. In the present study we performed a quantitative and qualitative morphologic examination of the intercalated cells in the IMCD of the rat and compared the results to observations obtained from intercalated cells in the collecting duct in the inner stripe of the outer medulla (OMCDi). Kidneys of male rats were preserved by in vivo perfusion with glutaraldehyde and processed for morphologic evaluation. With light microscopy and scanning electron microscopy intercalated cells were found in the outer third of the IMCD (IMCD1) and accounted for 10% of the total cell population. They were absent in the terminal two-thirds of the IMCD. Examination of the intercalated cells using transmission electron microscopy revealed striking similarities between the cells of the IMCD1 and those in the OMCDi. In addition, no differences were found in the surface densities of the apical or basolateral plasma membranes or the volume densities of the mitochondria of the intercalated cells in the two regions. In light of the morphologic similarity with the intercalated cells of the OMCDi that are believed to be involved in hydrogen ion secretion, it is likely that the intercalated cells of the IMCD1 are also involved in the acidification of tubular fluid.
Conclusion: We provide new evidence for matrix-to-cell signaling in acellular whole organ scaffolds that induces differentiation of pluripotent precursor cells to endothelial lineage. Production of mouse basement membrane supports remodeling of host (rat)-derived scaffolds and thereby warrants further investigation as a promising approach for xenotransplantation.Methods: We previously showed that murine embryonic stem cells arterially seeded into acellular rat whole kidney scaffolds multiply and demonstrate morphologic, immunohistochemical and gene expression evidence for differentiation. Vascular cell endothelialization was now further tested by endothelial specific BsLB4 lectin and anti-VEGFR2 (Flk1) antibodies. Remodeling of the matrix basement membranes from rat to mouse ("murinization") was assessed by a monoclonal antibody specific for mouse laminin b1 chain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.