Recently, we reported a method to estimate the proportion of phenotypic variance explained by all SNPs from genome-wide association studies, and estimated that half of the heritability for human height was captured by common SNPs. Here we partition genetic variation for height, body mass index (BMI), von Willebrand factor (vWF) and QT interval (QTi) onto chromosomes and chromosome segments, using 586,898 SNPs genotyped on 11,586 unrelated individuals. We estimate that ~45%, ~17%, ~25% and ~21% of variance in height, BMI, vWF and QTi, respectively, can be explained by considering all autosomal SNPs simultaneously, and a further ~0.5–1% by X-chromosome SNPs for height, BMI and vWF. We show that variance explained by each chromosome for height and QTi is proportional to the total gene length on that chromosome. In genome-wide analyses, common SNPs in or near genes explain more variation than SNPs between genes. We propose a novel approach to estimate variation due to cryptic relatedness and population stratification. Our results provide further evidence that a substantial proportion of heritability is accounted for by causal variants in linkage disequilibrium with common SNPs; that height, BMI and QTi are highly polygenic traits; and that the additive variation explained by a part of the genome is approximately proportional to the total length of DNA contained within genes therein.
Clonal mosaicism for large chromosomal anomalies (duplications, deletions and uniparental disomy) was detected using SNP microarray data from over 50,000 subjects recruited for genome-wide association studies. This detection method requires a relatively high frequency of cells (>5–10%) with the same abnormal karyotype (presumably of clonal origin) in the presence of normal cells. The frequency of detectable clonal mosaicism in peripheral blood is low (<0.5%) from birth until 50 years of age, after which it rises rapidly to 2–3% in the elderly. Many of the mosaic anomalies are characteristic of those found in hematological cancers and identify common deleted regions that pinpoint the locations of genes previously associated with hematological cancers. Although only 3% of subjects with detectable clonal mosaicism had any record of hematological cancer prior to DNA sampling, those without a prior diagnosis have an estimated 10-fold higher risk of a subsequent hematological cancer (95% confidence interval = 6–18).
Among women with GD identified by contemporary criteria compared with those without it, GD was significantly associated with a higher maternal risk for a disorder of glucose metabolism during long-term follow-up after pregnancy. Among children of mothers with GD vs those without it, the difference in childhood overweight or obesity defined by body mass index cutoffs was not statistically significant; however, additional measures of childhood adiposity may be relevant in interpreting the study findings.
Whether hyperglycemia in utero less than overt diabetes is associated with altered childhood glucose metabolism is unknown. We examined associations of gestational diabetes mellitus (GDM) not confounded by treatment with childhood glycemia in the Hyperglycemia and Adverse Pregnancy Outcome (HAPO) cohort. RESEARCH DESIGN AND METHODS HAPO Follow-up Study (FUS) included 4,160 children ages 10-14 years who completed all or part of an oral glucose tolerance test (OGTT) and whose mothers had a 75-g OGTT at ∼28 weeks of gestation with blinded glucose values. The primary predictor was GDM by World Health Organization criteria. Child outcomes were impaired fasting glucose (IFG), impaired glucose tolerance (IGT), and type 2 diabetes. Additional measures included insulin sensitivity and secretion and oral disposition index. RESULTS For mothers with GDM, 10.6% of children had IGT compared with 5.0% of children of mothers without GDM; IFG frequencies were 9.2% and 7.4%, respectively. Type 2 diabetes cases were too few for analysis. Odds ratios (95% CI) adjusted for family history of diabetes, maternal BMI, and child BMI z score were 1.09 (0.78-1.52) for IFG and 1.96 (1.41-2.73) for IGT. GDM was positively associated with child's 30-min, 1-h, and 2-h but not fasting glucose and inversely associated with insulin sensitivity and oral disposition index (adjusted mean difference 276.3 [95% CI 2130.3 to 222.4] and 20.12 [20.17 to 20.064]), respectively, but not insulinogenic index. CONCLUSIONS Offspring exposed to untreated GDM in utero are insulin resistant with limited b-cell compensation compared with offspring of mothers without GDM. GDM is significantly and independently associated with childhood IGT. The incidence of type 2 diabetes among youth is rising, due, in part, to increasing prevalence of childhood obesity (1-3). Worldwide, it is estimated that type 2 diabetes in children will continue to increase, posing a significant public health and financial burden (4). In addition to childhood obesity, intrauterine exposure to maternal preexisting diabetes or gestational diabetes mellitus (GDM) is associated with a higher
An algorithm using commonly available data from five different EMR can accurately identify T2D cases and controls for genetic study across multiple institutions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.