BACKGROUND: Drug-induced or acquired long QT syndrome occurs as a result of the unintended disruption of cardiac repolarization due to drugs that block cardiac ion channels. These side effects have been responsible for the withdrawal of a range of drugs from market and are a common reason for termination of the development of new drugs in the preclinical stage. Existing approaches to risk prediction are expensive and overly sensitive meaning that recently there have been renewed efforts, largely driven by the comprehensive proarrhythmic assay initiative, to develop more accurate methods for allocation of proarrhythmic risk. METHODS: In this study, we aimed to quantify changes in the morphology of the repolarization phase of the cardiac action potential as an indicator of proarrhythmia, supposing that these shape changes might precede the emergence of ectopic depolarizations that trigger arrhythmia. To do this, we describe a new method of quantifying action potential morphology by measuring the radius of curvature of the repolarization phase both in simulated action potentials, as well as in action potentials measured from induced pluripotent stem cell-derived cardiomyocytes. Features derived from the curvature signal were used as inputs for logistic regressions to predict proarrhythmic risk. RESULTS: Optimal risk classifiers based on morphology were able to correctly classify risk to drugs in the comprehensive proarrhythmic assay initiative panels with very high accuracy (0.9375) and outperformed conventional metrics based on action potential duration at 90% repolarization, triangulation, and charge movement (qNet). CONCLUSIONS: Analysis of action potential morphology in response to proarrhythmic drugs improves prediction of torsadogenic risk. Furthermore, morphology metrics can be measured directly from the action potential, potentially eliminating the burden of undertaking complex screens of potency and drug-binding kinetics against multiple cardiac ion channels. As such, this method has the potential to improve and streamline regulatory assessment of proarrhythmia in preclinical drug development.
Approximately 30% to 70% of patients with cirrhosis have QT interval prolongation. In patients without cirrhosis, QT prolongation is associated with an increased risk of ventricular arrhythmias, such as torsade de pointes (TdP). In cirrhotic patients, there is likely a significant association between the corrected QT (QTc) interval and the severity of liver disease, and possibly with increased mortality. We present a stepwise overview of the pathophysiology and management of acquired long QT syndrome in cirrhosis. The QT interval is mainly determined by ventricular repolarization. To compare the QT interval in time it should be corrected for heart rate (QTc), preferably by the Fridericia method. A QTc interval >450 ms in males and >470 ms in females is considered prolonged. The pathophysiological mechanism remains incompletely understood, but may include metabolic, autonomic or hormonal imbalances, cirrhotic heart failure and/or genetic predisposition. Additional external risk factors for QTc prolongation include medication (I Kr blockade and altered cytochrome P450 activity), bradycardia, electrolyte abnormalities, underlying cardiomyopathy and acute illness. In patients with cirrhosis, multiple hits and cardiac-hepatic interactions are often required to sufficiently erode the repolarization reserve before long QT syndrome and TdP can occur. While some risk factors are unavoidable, overall risk can be mitigated by electrocardiogram monitoring and avoiding drug interactions and electrolyte and acidbase disturbances. In cirrhotic patients with prolonged QTc interval, a joint effort by cardiologists and hepatologists may be useful and significantly improve the clinical course and outcome.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.