Cross-channel degradation is one of the significant challenges facing speaker recognition systems. We study the problem for speaker recognition using support vector machines (SVMs). We perform channel compensation in SVM modeling by removing non-speaker nuisance dimensions in the SVM expansion space via projections. Training to remove these dimensions is accomplished via an eigenvalue problem. The eigenvalue problem attempts to reduce multisession variation for the same speaker, reduce different channel effects, and increase "distance" between different speakers. We apply our methods to a subset of the Switchboard 2 corpus. Experiments show dramatic improvement in performance for the cross-channel case.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.