This paper describes the development and evaluation of the UK's new high resolution global coupled model, HiGEM, which is based on the latest climate configuration of the Met Office Unified Model, HadGEM1. In HiGEM, the horizontal resolution has been increased to 1.25 • x 0.83 • in longitude and latitude for the atmosphere, and 1/3 • x 1/3 • globally for the ocean. Multi-decadal integrations of HiGEM, and the lower resolution HadGEM, are used to explore the impact of resolution on the fidelity of climate simulations.Generally SST errors are reduced in HiGEM. Cold SST errors associated with the path of the North Atlantic drift improve, and warm SST errors are reduced in upwelling stratocumulus regions where the simulation of low level cloud is better at higher resolution. The ocean model in HiGEM allows ocean eddies to be partially resolved, which dramatically improves the representation of sea surface height variability. In the Southern Ocean, most of the heat transports in HiGEM is achieved by resolved eddy motions which replaces the parametrised eddy heat transport in the lower resolution model. HiGEM is also able to more realistically simulate small-scale features in the windstress curl around islands and oceanic SST fronts, which may have implications for oceanic upwelling and ocean biology.Higher resolution in both the atmosphere and the ocean allows coupling to occur on small spatial scales. In particular the small scale interaction recently seen in satellite imagery between the atmosphere and Tropical instability waves in the Tropical Pacific ocean is realistically captured in HiGEM. Tropical instability waves play a role in improving the simulation of the mean state of the Tropical Pacific which has important implications for climate variability.In particular all aspects of the simulation of ENSO (spatial patterns, the timescales at which ENSO occurs, and global teleconnections) are much improved in HiGEM.2
[1] We demonstrate that recent observed trends in the annual and austral summer Southern Hemisphere Annular Mode (SAM) are unlikely to be due to internal climate variability, since they exceed any equivalent-length trends in a millennial General Circulation Model (GCM) control run with constant forcings. In contrast we show that observed trends in the SAM are consistent with the combined effects of anthropogenic and natural forcings in GCM simulations. As these trends begin prior to stratospheric ozone depletion we challenge the assertion that this process is primarily responsible for changes in the SAM. Moreover, anthropogenic forcings have a larger effect on the austral summer SAM in combination with natural forcings than when acting in isolation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.