In recent decades, many bumble bee species have declined due to changes in habitat, climate, and pressures from pathogens, pesticides, and introduced species. The western bumble bee (Bombus occidentalis), once common throughout western North America, is a species of concern and will be considered for listing by the U.S. Fish and Wildlife Service (USFWS) under the Endangered Species Act (ESA). We attempt to improve alignment of data collection and research with USFWS needs to consider redundancy, resiliency, and representation in the upcoming species status assessment. We reviewed existing data and literature on B. occidentalis, highlighting information gaps and priority topics for research. Priorities include increased knowledge of trends, basic information on several life-history stages, and improved understanding of the relative and interacting effects of stressors on population trends, especially the effects of pathogens, pesticides, climate change, and habitat loss. An understanding of how and where geographic range extent has changed for the two subspecies of B. occidentalis is also needed. We outline data that could be easily collected in other research projects that would increase their utility for understanding range-wide trends of bumble bees. We modeled the overall trend in occupancy from 1998 to 2018 of Bombus occidentalis within the continental United States using existing data. The probability of local occupancy declined by 93% over 21 yr from 0.81 (95% CRI = 0.43, 0.98) in 1998 to 0.06 (95% CRI = 0.02, 0.16) in 2018. The decline in occupancy varied spatially by landcover and other environmental factors. Detection rates vary in both space and time, but peak detection across the continental United States occurs in mid-July. We found considerable spatial gaps in recent sampling, with limited sampling in many regions, including most of ❖ www.esajournals.org 1 June 2020 ❖ Volume 11(6) ❖ Article e03141Alaska, northwestern Canada, and the southwestern United States. We therefore propose a sampling design to address these gaps to best inform the ESA species status assessment through improved assessment of how the spatial distribution of stressors influences occupancy changes. Finally, we request involvement via data sharing, participation in occupancy sampling with repeated visits to distributed survey sites, and complementary research to address priorities outlined in this paper.
The acute decline in global biodiversity includes not only the loss of rare species, but also the rapid collapse of common species across many different taxa. The loss of pollinating insects is of particular concern because of the ecological and economic values these species provide. The western bumble bee ( Bombus occidentalis ) was once common in western North America, but this species has become increasingly rare through much of its range. To understand potential mechanisms driving these declines, we used Bayesian occupancy models to investigate the effects of climate and land cover from 1998 to 2020, pesticide use from 2008 to 2014, and projected expected occupancy under three future scenarios. Using 14,457 surveys across 2.8 million km 2 in the western United States, we found strong negative relationships between increasing temperature and drought on occupancy and identified neonicotinoids as the pesticides of greatest negative influence across our study region. The mean predicted occupancy declined by 57% from 1998 to 2020, ranging from 15 to 83% declines across 16 ecoregions. Even under the most optimistic scenario, we found continued declines in nearly half of the ecoregions by the 2050s and mean declines of 93% under the most severe scenario across all ecoregions. This assessment underscores the tenuous future of B. occidentalis and demonstrates the scale of stressors likely contributing to rapid loss of related pollinator species throughout the globe. Scaled-up, international species-monitoring schemes and improved integration of data from formal surveys and community science will substantively improve the understanding of stressors and bumble bee population trends.
BackgroundExtensive work has shown that vectors almost never feed at random. Often, a subset of individual hosts and host species are fed on much more frequently than expected from their abundance and this can amplify pathogen transmission. However, the drivers of variation in contact patterns between vectors and their hosts are not well understood, even in relatively well-studied systems such as West Nile virus (WNV).MethodsWe compared roosting height and roost aggregation size of seven avian host species of WNV with patterns of host-seeking mosquito (Culex pipiens) abundance at communal and non-communal roost sites.ResultsFirst, host-seeking mosquito abundance increased with height and paralleled increased mosquito feeding preferences on species roosting higher in the tree canopy. Second, there were several hundred-fold fewer mosquitoes per bird trapped at American robin (Turdus migratorius) communal roosts compared to non-communal roost sites, which could reduce transmission from and to this key amplifying host species. Third, seasonal changes in communal roost formation may partly explain observed seasonal changes in mosquito feeding patterns, including a decrease in feeding on communal roosting robins.ConclusionsThese results illustrate how variation in habitat use by hosts and vectors and social aggregation by hosts influence vector-host interactions and link the behavioral ecology of birds and the transmission of vector-borne diseases to humans.
Tallgrass prairies are among the most threatened ecosystems in the world. Remaining prairies tend to be small and isolated and many are associated with urban and suburban landscapes. We asked how urbanization might impact the conservation value of tallgrass prairie fragments for grassland birds by comparing the densities and the probability of occurrence of Dickcissels (Spiza americana), Grasshopper Sparrows (Ammodramus savannarum), and Eastern Meadowlarks (Sturnella magna) across 28 grasslands surrounded by low, moderate, and high levels of urbanization. We employed a hierarchical model selection approach to ask how variables that describe the vegetation structure, size and shape of grasslands, and urbanization category might explain variation in density and occurrence over two breeding seasons. Occurrence of all three species was explained by a combination of vegetation and patch characteristics, though each species was influenced by different variables and only Eastern Meadowlark occurrence was explained by urbanization. Abundance of all three species was negatively impacted by urbanization, though vegetation variables were also prevalent in the best‐supported models. We found no evidence that vegetation structure or other patch characteristics varied in a systematic way across urbanization categories. Although our results suggest that grassland bird density declines with urbanization, urban tallgrass prairies still retain conservation value for grassland birds because of the limited availability of tallgrass prairie habitat and the limited impact of urbanization on species occurrence.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.