Muscular-hydrostats, muscular organs which lack typical systems of skeletal support, include the tongues of mammals and lizards, the arms and tentacles of cephalopod molluscs and the trunks of elephants. In this paper the means by which such organs produce elongation, shortening, bending and torsion are discussed. The most important biomechanical feature of muscular-hydrostats is that their volume is constant, so that any decrease in one dimension will cause a compensatory increase in at least one other dimension. Elongation of a muscular-hydrostat is produced by contraction of transverse, circular or radial muscles which decrease the cross-section. Shortening is produced by rontraction of longitudinal muscles. The relation between length and width of a constant volume structure allows amplification of muscle force or displacement in muscular-hydrostats and other hydrostatic systems. Bending requires simultaneous contraction of longitudinal and antagonistic circular, transverse or radial muscles. In bending, one muscle mass acts as an effector of movement while the alternate muscle mass provides support for that movement. Torsion is produced by contraction of muscles which wrap the muscular-hydrostat in a helical fashion.
Traditional robots have rigid underlying structures that limit their ability to interact with their environment. For example, conventional robot manipulators have rigid links and can manipulate objects using only their specialised end effectors. These robots often encounter difficulties operating in unstructured and highly congested environments. A variety of animals and plants exhibit complex movement with soft structures devoid of rigid components. Muscular hydrostats (e.g. octopus arms and elephant trunks) are almost entirely composed of muscle and connective tissue and plant cells can change shape when pressurised by osmosis. Researchers have been inspired by biology to design and build soft robots. With a soft structure and redundant degrees of freedom, these robots can be used for delicate tasks in cluttered and/or unstructured environments. This paper discusses the novel capabilities of soft robots, describes examples from nature that provide biological inspiration, surveys the state of the art and outlines existing challenges in soft robot design, modelling, fabrication and control.
Traditional robots have rigid underlying structures that limit their ability to interact with their environment. For example, conventional robot manipulators have rigid links and can manipulate objects using only their specialised end effectors. These robots often encounter difficulties operating in unstructured and highly congested environments. A variety of animals and plants exhibit complex movement with soft structures devoid of rigid components. Muscular hydrostats (e.g. octopus arms and elephant trunks) are almost entirely composed of muscle and connective tissue and plant cells can change shape when pressurised by osmosis. Researchers have been inspired by biology to design and build soft robots. With a soft structure and redundant degrees of freedom, these robots can be used for delicate tasks in cluttered and/or unstructured environments. This paper discusses the novel capabilities of soft robots, describes examples from nature that provide biological inspiration, surveys the state of the art and outlines existing challenges in soft robot design, modelling, fabrication and control.
Octopus suckers consist of a tightly packed three-dimensional array of muscle with three major muscle fiber orientations: 1) radial muscles that traverse the wall; 2) circular muscles arranged circumferentially around the sucker; and 3) meridional muscles oriented perpendicular to the circular and radial muscles. The sucker also includes inner and outer fibrous connective tissue layers and an array of crossed connective tissue fibers embedded in the musculature. Adhesion results from reducing the pressure inside the sucker cavity. This can be achieved by the three-dimensional array of muscle functioning as a muscular-hydrostat. Contraction of the radial muscles thins the wall, thereby increasing the enclosed volume of the sucker. If the sucker is sealed to a surface the cohesiveness of water resists this expansion. Thus, the pressure of the enclosed water decreases instead. The meridional and circular muscles antagonize the radial muscles. The crossed connective tissue fibers may store elastic energy, providing an economical mechanism for maintaining attachment for extended periods. Measurements using miniature flush-mounted pressure transducers show that suckers can generate hydrostatic pressures below 0 kPa on wettable surfaces but cannot do so on non-wettable surfaces. Thus, cavitation, the failure of water in tension, may limit the attachment force of suckers. As depth increases, however, cavitation will cease to be limiting because ambient pressure increases with depth while the cavitation threshold is unchanged. Structural differences between suckers will then determine the attachment force.
Summary A remarkably diverse group of organisms rely on a hydrostatic skeleton for support, movement, muscular antagonism and the amplification of the force and displacement of muscle contraction. In hydrostatic skeletons, force is transmitted not through rigid skeletal elements but instead by internal pressure. Functioning of these systems depends on the fact that they are essentially constant in volume as they consist of relatively incompressible fluids and tissue. Contraction of muscle and the resulting decrease in one of the dimensions thus results in an increase in another dimension. By actively (with muscle) or passively (with connective tissue) controlling the various dimensions, a wide array of deformations, movements and changes in stiffness can be created. An amazing range of animals and animal structures rely on this form of skeletal support, including anemones and other polyps, the extremely diverse wormlike invertebrates, the tube feet of echinoderms, mammalian and turtle penises, the feet of burrowing bivalves and snails, and the legs of spiders. In addition, there are structures such as the arms and tentacles of cephalopods, the tongue of mammals and the trunk of the elephant that also rely on hydrostatic skeletal support but lack the fluid-filled cavities that characterize this skeletal type. Although we normally consider arthropods to rely on a rigid exoskeleton, a hydrostatic skeleton provides skeletal support immediately following molting and also during the larval stage for many insects. Thus, the majority of animals on earth rely on hydrostatic skeletons.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.