Mass spectrometry (MS) has played an increasingly important role in the identification and structural and functional characterization of proteins. In particular, the use of tandem mass spectrometry has afforded one of the most versatile methods to acquire structural information for proteins and protein complexes. The unique nature of electron capture dissociation (ECD) for cleaving protein backbone bonds while preserving non-covalent interactions has made it especially suitable for the study of native protein structures. However, the intra- and inter-molecular interactions stabilized by hydrogen bonds and salt bridges can hinder the separation of fragments even with pre-activation, which has become particularly problematic for the study of large macromolecular proteins and protein complexes. Here, we describe the capabilities of another activation method, 30 eV electron ionization dissociation (EID), for the top-down MS characterization of native protein-ligand and protein-protein complexes. Rich structural information that cannot be delivered by ECD can be generated by EID. EID allowed for the comparison of the gas-phase and the solution-phase structural stability and unfolding process of human carbonic anhydrase I (HCA-I). In addition, the EID fragmentation patterns reflect the structural similarities and differences among apo-, Zn-, and Cu,Zn-superoxide dismutase (SOD1) dimers. In particular, the structural changes due to Cu-binding and a point mutation (G41D) were revealed by EID-MS. The performance of EID was also compared to that of 193 nm ultraviolet photodissociation (UVPD), which allowed us to explore their qualitative similarities and differences as potential valuable tools for the MS study of native proteins and protein complexes.
We report the implementation of proton transfer reactions (PTR) and ion parking on an Orbitrap mass spectrometer. PTR/ion parking allows charge states of proteins to be focused into a single lower charge state via sequential deprotonation reactions with a proton scavenging reagent, in this case, a nitrogen-containing adduct of fluoranthene. Using PTR and ion parking, we evaluate the charge state dependence of fragmentation of ubiquitin (8.6 kDa), myoglobin (17 kDa), and carbonic anhydrase (29 kDa) upon higher energy collisional dissociation (HCD) or ultraviolet photodissociation (UVPD). UVPD exhibited less charge state dependence, thus yielding more uniform distributions of cleavages along the protein backbone and consequently higher sequence coverage than HCD. HCD resulted in especially prominent cleavages C-terminal to amino acids containing acidic side-chains and N-terminal to proline residues; UVPD did not exhibit preferential cleavage adjacent to acidic residues but did show enhancement next to proline and phenylalanine.
Gas-phase intra-molecular crosslinking of protein ubiquitin cations has been demonstrated via ion/ion reactions with anions of a homobifunctional N-hydroxysulfosuccinimide (sulfo-NHS) ester reagent. The ion/ion reaction between multiply-protonated ubiquitin and crosslinker monoanions produces a stable, charge reduced complex. Covalent crosslinking is indicated by the consecutive loss of two molecules of sulfo-NHS under ion trap collisional activation conditions. Covalent modification is verified by the presence of covalently crosslinked sequence ions produced by ion-trap collision-induced dissociation of the ion generated from the losses of sulfo-NHS. Analysis of the crosslinked sequence fragments allows for the localization of crosslinked primary amines, enabling proximity mapping of the gas-phase 3-D structures. The presence of two unprotonated reactive sites within the distance constraint of the crosslinker is required for successful crosslinking. The ability to covalently crosslink is therefore sensitive to protein charge state. As the charge state increases, fewer reactive sites are available and protein structure is more likely to become extended due to intramolecular electrostatic repulsion. At high charge states, the reagent shows little evidence for covalent crosslinking but does show evidence for ‘electrostatic crosslinking’ in that the binding of the sulfonate groups to the protein is sufficiently strong that backbone cleavages are favored over reagent detachment under ion trap collisional activation conditions.
Gas-phase conjugation to unprotonated arginine side-chains via N-hydroxysuccinimide (NHS) esters is demonstrated through both charge reduction and charge inversion ion/ion reactions. The unprotonated guanidino group of arginine can serve as a strong nucleophile, resulting in the facile displacement of NHS from NHS esters with concomitant covalent modification of the arginine residue. This reactivity is analogous to that observed with unprotonated primary amines such as the N-terminus or ε-amino group of lysine. In solution, however, the arginine residues tend to be protonated at pH values low enough to prevent hydrolysis of NHS esters, which would render them relatively unreactive with NHS esters. This work demonstrates novel means for gas-phase conjugation to arginine side-chains in polypeptide ions.
Facile cleavage C-terminal to ornithine residues in gas phase peptides has been observed and termed the ornithine effect. Peptides containing internal or C-terminal ornithine residues, which are formed from deguanidination of arginine in solution, were fragmented to produce either a y-ion or water loss, respectively, and the complementary b-ion. The fragmentation patterns of several peptides containing arginine were compared to those of the ornithine analogues. Conversion of arginine to ornithine results in a decrease of the gas phase proton affinity of the residue, thereby increasing the mobility of the ionizing proton. This alteration allows the nucleophilic amine to facilitate a neighboring group reaction to induce a cleavage of the adjacent amide bond. The selective cleavage at the ornithine residue is proposed to result from the highly favorable generation of a six-membered lactam ring. The ornithine effect was compared with the well-known proline and aspartic acid effects in peptide fragmentation using angiotensin II, DRVYIHPF and the ornithine analogue, DOVYIHPF. Under conditions favorable to either the aspartic acid (i.e. singly protonated peptide) or proline effect (i.e. doubly protonated peptide), the ornithine effect was consistently observed to be the more favorable fragmentation pathway. The highly selective nature of the ornithine effect opens up the possibility for conversion of arginine to ornithine residues to induce selective cleavages in polypeptide ions. Such an approach may complement strategies that seek to generate non-selective cleavages of the related peptides.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.