The recent direct observation of gravitational wave event GW 170817 and its GRB170817A signal has opened up a new window to study neutron stars and heralds a new era of Astronomy referred to as the Multimessenger Astronomy. Both gravitational and electromagnetic waves from a single astrophysical source have been detected for the first time. This combined detection offers an unprecedented opportunity to place constraints on the neutron star matter equation of state. The existence of a possible hadron-quark phase transition in the central regions of neutron stars is associated with the appearance of g-modes, which are extremely important as they could signal the presence of a pure quark matter core in the centers of neutron stars. Observations of g-modes with frequencies between 1 kHz and 1.5 kHz could be interpreted as evidence of a sharp hadron-quark phase transition in the cores of neutron stars. In this article, we shall review the description of the dense matter composing neutron stars, the determination of the equation of state of such matter, and the constraints imposed by astrophysical observations of these fascinating compact objects. arXiv:1907.04654v1 [astro-ph.HE]
Numerous theoretical studies using various equation of state models have shown that quark matter may exist at the extreme densities in the cores of high-mass neutron stars. It has also been shown that a phase transition from hadronic matter to quark matter would result in an extended mixed phase region that would segregate phases by net charge to minimize the total energy of the phase, leading to the formation of a crystalline lattice. The existence of quark matter in the core of a neutron star may have significant consequences for its thermal evolution, which for thousands of years is facilitated primarily by neutrino emission. In this work we investigate the effect a crystalline quark-hadron mixed phase can have on the neutrino emissivity from the core. To this end we calculate the equation of state using the relativistic mean-field approximation to model hadronic matter and a nonlocal extension of the threeflavor Nambu-Jona-Lasinio model for quark matter. Next we determine the extent of the quark-hadron mixed phase and its crystalline structure using the Glendenning construction, allowing for the formation of spherical blob, rod, and slab rare phase geometries. Finally we calculate the neutrino emissivity due to electron-lattice interactions utilizing the formalism developed for the analogous process in neutron star crusts. We find that the contribution to the neutrino emissivity due to the presence of a crystalline quarkhadron mixed phase is substantial compared to other mechanisms at fairly low temperatures ( 10 9 K) and quark fractions ( 30%), and that contributions due to lattice vibrations are insignificant compared to static-lattice contributions.PACS. 21.65.Qr quark matter -26.60.Kp equations of state -97.60.Jd neutron stars
This short review aims at giving a brief overview of the various states of matter that have been suggested to exist in the ultra-dense centers of neutron stars. Particular emphasis is put on the role of quark deconfinement in neutron stars and on the possible existence of compact stars made of absolutely stable strange quark matter (strange stars). Astrophysical phenomena, which distinguish neutron stars from quark stars, are discussed and the question of whether or not quark deconfinement may occur in neutron stars is investigated. Combined with observed astrophysical data, such studies are invaluable to delineate the complex structure of compressed baryonic matter and to put firm constraints on the largely unknown equation of state of such matter.
Abstract:In this paper, we use a three flavor non-local Nambu-Jona-Lasinio (NJL) model, an improved effective model of Quantum Chromodynamics (QCD) at low energies, to investigate the existence of deconfined quarks in the cores of neutron stars. Particular emphasis is put on the possible existence of quark matter in the cores of rotating neutron stars (pulsars). In contrast to non-rotating neutron stars, whose particle compositions do not change with time (are frozen in), the type and structure of the matter in the cores of rotating neutron stars depends on the spin frequencies of these stars, which opens up a possible new window on the nature of matter deep in the cores of neutron stars. Our study shows that, depending on mass and rotational frequency, up to around 8% of the mass of a massive neutron star may be in the mixed quark-hadron phase, if the phase transition is treated as a Gibbs transition. We also find that the gravitational mass at which quark deconfinement occurs in rotating neutron stars varies quadratically with spin frequency, which can be fitted by a simple formula.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.