The hamadryas baboon (Papio hamadryas hamadryas) is found both in East Africa and western Arabia and is the only free-ranging nonhuman primate in Arabia. It has been hypothesized that hamadryas baboons colonized Arabia in the recent past and were possibly even transported there by humans. We investigated the phylogeography of hamadryas baboons by sequencing a portion of the control region of mtDNA in 107 baboons from four Saudi Arabian populations and combing these data with published data from Eritrean (African) P. h. hamadryas. Analysis grouped sequences into three distinct clades, with clade 1 found only in Arabia, clade 3 found only in Africa, but clade 2 found in both Arabian and African P. h. hamadryas and also in the olive baboon, P. h. anubis. Patterns of variation within Arabia are neither compatible with the recent colonization of Arabia, implying that baboons were not transported there by humans, nor with a northerly route of colonization of Arabia. We propose that hamadryas baboons reached Arabia via land bridges that have formed periodically during glacial maxima at the straits of Bab el Mandab in the southern Red Sea. We suggest that the genetic differentiation of Arabian from African populations suggests that Arabian populations have a higher conservation status than recognized previously.
Goitred gazelle (Gazella subgutturosa) rank among the most endangered mammals on the Arabian Peninsula and the Asian steppes. Past conservation efforts have been plagued by confusion about the phylogenetic relationship among various-phenotypically discernablepopulations, and even the question of species boundaries was far from being certain. This lack of knowledge had a direct impact on conservation measures, especially ex situ breeding programmes, hampering the assignment of captive stocks to potential conservation units. Here, we provide a phylogenetic framework, based on the analysis of mtDNA sequences of a number of individuals collected from the wild and captivity throughout the species' natural range. Our analyses revealed a polyphyly within the presumed species of G. subgutturosa resulting in two distinct clades: one on the Arabian Peninsula, Iraq, Jordan, Syria and Turkey (Gazella marica; sand gazelle) and one genetically diverse larger clade from the rest of its Asian range (G. subgutturosa; goitred gazelle). Additionally, we provide a quick method (PCR-RFLP) to analyse the taxonomic affiliation of captive gazelles that will be used for re-introductions into the wild.
The identification of taxonomically appropriate populations of endangered species for captive breeding and reintroduction programs is fundamental to the success of those programs. The Saudi gazelle ( Gazella saudiya ) was endemic to the Arabian peninsula but is now considered extinct in the wild and is potentially a candidate for captive breeding and reintroduction. Using 375 base pairs of mitochondrial DNA (mtDNA) cytochrome b gene derived from museum samples collected from the wild prior to the presumed extinction of this species, we show that G. saudiya is the sister taxon of the African dorcas gazelle ( G. dorcas ). Reciprocal monophyly of G. saudiya mtDNA haplotypes with G. dorcas , coupled with morphological distinctiveness, suggests that it is an evolutionarily significant unit. These data indicate that captive populations identified previously as potential sources of G. saudiya for captive breeding appear incorrectly designated and are irrelevant to the conservation of G. saudiya . The polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) analysis of several private collections of living gazelles in Saudi Arabia provides no evidence for the survival of G. saudiya . We recommend that field surveys be undertaken to establish whether G. saudiya is indeed extinct in the wild and that other private collections within the Arabian peninsula be screened genetically. We urge caution when captive animals of unknown provenance are used to investigate the phylogenetics of cryptic species groups. Reanálisis Filogenético de la Gacela Saudi y las Implicaciones para Su ConservaciónResumen: La identificación de poblaciones taxonómicamente apropiadas de especies en peligro para programas de reproducción en cautiverio y de reintroducción es fundamental para su éxito. La Gacela Saudi ( Gazella saudiya ) fue endémica a la península de Arabia pero ahora está considerada como extinta en su medio y es un candidato potencial para reproducción en cautiverio y reintroducción. Utilizando 375 pares de bases de ADN mitocondrial (ADNmt) del gene citocromo b derivados de muestras de museos colectadas en el medio silvestre antes de la extinción de la especie, mostramos que G. saudiya es el taxón hermano de la gacela dorcas africana ( G. dorcas ). La monofilia recíproca de haplotipos de ADNmt de G. saudiya con G. dorcas , aunado a diferencias morfológicas, sugiere que es una unidad evolutiva significativa. Estos datos indican que las poblaciones cautivas identificadas previamente como fuente potencial de G. saudiya para reproducción en cautiverio están incorrectamente identificadas y son irrelevantes para la conservación de G. saudiya . El análisis PCR-RFLP de varias colecciones privadas de gacelas vivas en Arabia Saudita no proporcionan evidencia para la supervivencia de G. saudiya . Recomendamos que se realicen muestreos en el campo para establecer si en efecto G. saudiya está extinta en su hábitat y que se examinen genéticamente las otras colecciones privadas en la península Arábiga. Recomendamos precaución cuan...
Mountain gazelles (Gazella gazella) rank among the most critically endangered mammals on the Arabian Peninsula. Past conservation efforts have been plagued by confusion about the phylogenetic relationship among various 'phenotypically discernable' populations, and even the question of species boundaries was far from being certain. This lack of knowledge has had a direct impact on conservation measures, especially ex situ breeding programmes, hampering the assignment of captive stocks to potential conservation units. Here, we provide a phylogenetic framework, based on the analysis of mtDNA sequences (360 bp cytochrome b and 213 bp Control Region) of 126 individuals collected from the wild throughout the Arabian Peninsula and from captive stocks. Our analyses revealed two reciprocally monophyletic genetic lineages within the presumed species Gazella gazella: one 'northern clade' on the Golan Heights (Israel/Syrian border) and one genetically diverse larger clade from the rest of the Arabian Peninsula including the Arava Valley (Negev, Israel). Applying the Strict Phylogenetic Species Concept (sensu Mishler & Theriot, 2000) allows assigning species status to these two major clades.
We investigated the causes of mortality of the Arabian gazelle (Gazella arabica) based on the necropsy records of 1218 captive animals at King Khalid Wildlife Research Centre, Saudi Arabia, from 1988 to 2011. The largest number of deaths was attributed to trauma (391, 32.1%). Trauma was subdivided into the following three categories: collisions with fences (144, 11.8%); predator activity (91, 7.5%), and exhibit-mate aggression (156, 12.8%). Respiratory infection was another important cause of mortality, accounting for 186 (15.3%) deaths. Respiratory infection was more prevalent during the winter season (November to March). Other causes of death included gastrointestinal diseases, such as clostridiosis and salmonellosis (108, 8.9%). Maternal neglect (104, 8.5%), chronic renal fibrosis (34, 2.8%), and stress-related pathologies (35, 2.9%), in particular, capture myopathy, were also important causes of mortality. Here, the importance of these findings for improvement of the captive management of this vulnerable Arabian species is discussed, and for the first time, salmonellosis in Arabian gazelles is reported.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.