Standard practice in building models in software engineering normally involves three steps: collecting domain knowledge (previous results, expert knowledge); building a skeleton of the model based on step 1 including as yet unknown parameters; estimating the model parameters using historical data. Our experience shows that it is extremely difficult to obtain reliable data of the required granularity, or of the required volume with which we could later generalize our conclusions. Therefore, in searching for a method for building a model we cannot consider methods requiring large volumes of data. This paper discusses an experiment to develop a causal model (Bayesian net) for predicting the number of residual defects that are likely to be found during independent testing or operational usage. The approach supports (1) and (2), does not require (3), yet still makes accurate defect predictions (an R 2 of 0.93 between predicted and actual defects). Since our method does not Empir Software Eng (2008) require detailed domain knowledge it can be applied very early in the process life cycle. The model incorporates a set of quantitative and qualitative factors describing a project and its development process, which are inputs to the model. The model variables, as well as the relationships between them, were identified as part of a major collaborative project. A dataset, elicited from 31 completed software projects in the consumer electronics industry, was gathered using a questionnaire distributed to managers of recent projects. We used this dataset to validate the model by analyzing several popular evaluation measures (R 2 , measures based on the relative error and Pred). The validation results also confirm the need for using the qualitative factors in the model. The dataset may be of interest to other researchers evaluating models with similar aims. Based on some typical scenarios we demonstrate how the model can be used for better decision support in operational environments. We also performed sensitivity analysis in which we identified the most influential variables on the number of residual defects. This showed that the project size, scale of distributed communication and the project complexity cause the most of variation in number of defects in our model. We make both the dataset and causal model available for research use.
An important decision in software projects is when to stop testing. Decision support tools for this have been built using causal models represented by Bayesian Networks (BNs), incorporating empirical data and expert judgement. Previously, this required a custom BN for each development lifecycle. We describe a more general approach that allows causal models to be applied to any lifecycle. The approach evolved through collaborative projects and captures significant commercial input. For projects within the range of the models, defect predictions are very accurate. This approach enables decision-makers to reason in a way that is not possible with regression-based models.
Objectives1) To develop a rigorous and repeatable method for building effective Bayesian network (BN) models for medical decision support from complex, unstructured and incomplete patient questionnaires and interviews that inevitably contain examples of repetitive, redundant and contradictory responses; 2) To exploit expert knowledge in the BN development since further data acquisition is usually not possible; 3) To ensure the BN model can be used for interventional analysis; 4) To demonstrate why using data alone to learn the model structure and parameters is often unsatisfactory even when extensive data is available.MethodThe method is based on applying a range of recent BN developments targeted at helping experts build BNs given limited data. While most of the components of the method are based on established work, its novelty is that it provides a rigorous consolidated and generalised framework that addresses the whole life-cycle of BN model development. The method is based on two original and recent validated BN models in forensic psychiatry, known as DSVM-MSS and DSVM-P.ResultsWhen employed with the same datasets, the DSVM-MSS demonstrated competitive to superior predictive performance (AUC scores 0.708 and 0.797) against the state-of-the-art (AUC scores ranging from 0.527 to 0.705), and the DSVM-P demonstrated superior predictive performance (cross-validated AUC score of 0.78) against the state-of-the-art (AUC scores ranging from 0.665 to 0.717). More importantly, the resulting models go beyond improving predictive accuracy and into usefulness for risk management purposes through intervention, and enhanced decision support in terms of answering complex clinical questions that are based on unobserved evidence.ConclusionsThis development process is applicable to any application domain which involves large-scale decision analysis based on such complex information, rather than based on data with hard facts, and in conjunction with the incorporation of expert knowledge for decision support via intervention. The novelty extends to challenging the decision scientists to reason about building models based on what information is really required for inference, rather than based on what data is available and hence, forces decision scientists to use available data in a much smarter way.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.