Bimetallic heterostructures are used as industrial catalysts for many important transformations. However, conventional catalysts are primarily prepared in cost-effective manners without much appreciation in metal size control and metal-metal interaction. By employing recent nanotechnology, Pt nanocrystals with tailored sizes can be decorated with Co atoms in a controlled manner in colloid solution as preformed nanocatalysts before they are applied on support materials. Thus, we show that the terminal CO hydrogenation can be achieved in high activity, while the undesirable hydrogenation of the CC group can be totally suppressed in the selective hydrogenation of alpha,beta-unsaturated aldehydes to unsaturated alcohols, when Co decorated Pt nanocrystals within a critical size range are used. This is achieved through blockage of unselective low coordination sites and the optimization in electronic influence of the Pt nanoparticle of appropriate size by the Co decoration. This work clearly demonstrates the advantage in engineering preformed nanoparticles via a bottom-up construction and illustrates that this route of catalyst design may lead to improved catalytic processes.
It is reported that catalytic hydrogenation of cinnamaldehyde to cinnamyl alcohol is a structural sensitive reaction dependent on size and type of metal doper of unsupported platinum nanocrystals used. Smaller sizes of platinum nanocrystals are found to give lower selectivity to cinnamyl alcohol, which suggests the high index Pt sites are undesirable for the terminal aldehyde hydrogenation. A plot of reaction selectivity across the first row of transition metals as dopers gives a typical volcano shape curve, the apex of which depicts that a small level of cobalt on platinum nanocrystals can greatly promote the reaction selectivity. The selectivity towards cinnamyl alcohol over the cobalt doped Pt nanocrystals can reach over 99.7%, following the optimization in reaction conditions such as temperature, pressure and substrate concentration. Detailed studies of XRD, CO chemisorption (for FTIR), TEM, SEM, AES and XPS of the nanostructure catalyst clearly reveal that the decorated cobalt atoms not only block the high index sites of Pt nanocrystals (sites for Co deposition) but also exert a strong electronic influence on reaction pathways. The d-band centre theory is invoked to explain the volcano plot of selectivity versus metal doper.
FePt magnetic nanoparticles are an important candidate material for many future magnetic applications. FePt exists as two main phases, that is, a disordered face‐centered cubic (fcc) structure, which is generally prepared by chemical methods at low temperatures, and the high‐temperature chemically ordered face‐centered tetragonal (fct) structure. The fcc FePt, with low coercivity but associated with superparamagnetic properties, may find applications as a magnetic fluid or as a nanoscale carrier for chemical or biochemical species in biomedical areas, while fct FePt is proposed for use in ultrahigh‐density magnetic recording applications. However, for both of these applications an enhancement of the intrinsically weak magnetic properties, the avoidance of magnetic interferences from neighbor particles, and the improved stability of the small magnetic body remain key practical issues. We report a simple synthetic method for producing FePt nanoparticles that involves hydrothermal treatment of Fe and Pt precursors in glucose followed by calcination at 900 °C. This new method produces thermally stable spheroidal graphite nanoparticles (large and fullerene‐like) that encapsulate or decorate FePt particles of ca. 5 nm with no severe macroscopic particle coalescence. Also, a low coercivity of the material is recorded; indicative of small magnetic interference from neighboring carbon‐coated particles. Thus, this simple synthetic method involves the use of a more environmentally acceptable glucose/aqueous phase to offer a protective coating for FePt nanoparticles. It is also believed that such a synthetic protocol can be readily extended to the preparation of other graphite‐coated magnetic iron alloys of controlled size, stoichiometry, and physical properties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.