This paper focuses on the study of a one-dimensional topological dynamical system, the tent function. We give a good background to the theory of dynamical systems while establishing the important asymptotic properties of topological dynamical systems that distinguishes it from other fields by way of an example - the tent function. A precise definition of the tent function is given and iterates are clearly shown using the phase diagrams. By this same method, chaos in the tent map is shown as iterates become higher. We also show that the tent map has infinitely many chaotic orbits and also express some important features of chaos such as topological transitivity, boundedness and sensitivity to change in initial conditions from a topological viewpoint.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.