The transport of polystyrene microspheres was examined in packed glass beads under a variety of environmentally relevant ionic strength and flow conditions. The observed profiles of numbers of retained microspheres versus distance from the column entrance were much steeper than expected based on a constant rate coefficient of deposition acrossthe length of the column, indicating apparent decreases in deposition rate coefficients with transport distance. Deviation in the profile from log-linear decreases with distance was greatest under highly unfavorable conditions (low ionic strength), relatively reduced under mildly unfavorable conditions (high ionic strength), and was eliminated under favorable conditions. The generality of apparent decreases in deposition rate coefficients with distance of transport among microspheres, bacteria, and viruses leads to the conclusion that such effects reflect processes that are fundamental to filtration under unfavorable conditions. Numerical simulations of experiments that were performed under unfavorable conditions utilized a log-normal distribution of deposition rate coefficients among the colloid population in orderto simulate the effluent curves and retained profiles simultaneously. It is shown that while straining could be a significant contributor to the steep retained profiles at low ionic strength, where overall retention is low, distribution in interaction potentials among the population was a viable mechanism that can yield apparent decreases in deposition rate coefficients with distance of transport.
Understanding and predicting colloid transport and retention in water‐saturated porous media is important for the protection of human and ecological health. Early applications of colloid transport research before the 1990s included the removal of pathogens in granular drinking water filters. Since then, interest has expanded significantly to include such areas as source zone protection of drinking water systems and injection of nanometals for contaminated site remediation. This review summarizes predictive tools for colloid transport from the pore to field scales. First, we review experimental breakthrough and retention of colloids under favorable and unfavorable colloid/collector interactions (i.e., no significant and significant colloid‐surface repulsion, respectively). Second, we review the continuum‐scale modeling strategies used to describe observed transport behavior. Third, we review the following two components of colloid filtration theory: (i) mechanistic force/torque balance models of pore‐scale colloid trajectories and (ii) approximating correlation equations used to predict colloid retention. The successes and limitations of these approaches for favorable conditions are summarized, as are recent developments to predict colloid retention under the unfavorable conditions particularly relevant to environmental applications. Fourth, we summarize the influences of physical and chemical heterogeneities on colloid transport and avenues for their prediction. Fifth, we review the upscaling of mechanistic model results to rate constants for use in continuum models of colloid behavior at the column and field scales. Overall, this paper clarifies the foundation for existing knowledge of colloid transport and retention, features recent advances in the field, critically assesses where existing approaches are successful and the limits of their application, and highlights outstanding challenges and future research opportunities. These challenges and opportunities include improving mechanistic descriptions, and subsequent correlation equations, for nanoparticle (i.e., Brownian particle) transport through soil, developing mechanistic descriptions of colloid retention in so‐called “unfavorable” conditions via methods such as the “discrete heterogeneity” approach, and employing imaging techniques such as X‐ray tomography to develop realistic expressions for grain topology and mineral distribution that can aid the development of these mechanistic approaches.
A three-dimensional particle tracking model for colloid transport in porous media was developed that predicts colloid retention in porous media in the presence of an energy barrier via two mechanisms: (1) wedging of colloids within grain to grain contacts; (2) retention of colloids (without attachment) in flow stagnation zones. The model integrates forces experienced by colloids during transport in porous media, i.e., fluid drag, gravity, diffusion, and colloid-surface Derjaguin-Landau-Verwey-Overbeek interactions. The model was implemented for a fluid flow field that explicitly represented grain to grain contacts. The model utilized a variable time stepping routine to allow finer time steps in zones of rapid change in fluid velocity and colloid-surface interaction forces. Wedging was favored by colloid: collector ratios greater than about 0.005, with this threshold ratio increasing with decreasing fluid velocity. Retention in flow stagnation zones was demonstrated for colloid: collector ratios less than about 0.005, with this threshold decreasing with increasing fluid velocity. Both wedging and retention in flow stagnation zones were sensitive to colloid-surface interaction forces (energy barrier height and secondary energy minimum depth). The model provides a mechanistic basis for colloid retention in the presence of an energy barrier via processes that were recently hypothesized to explain experimental observations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.