1. The responses of neurons in the ventral cochlear nucleus (VCN) of decerebrate cats are described with regard to their regularity of discharge and latency. Regularity is measured by estimating the mean and standard deviation of interspike intervals as a function of time during responses to short tone bursts (25 ms). This method extends the usual interspike-interval analysis based on interval histograms by allowing the study of temporal changes in regularity during transient responses. The coefficient of variation (CV), equal to the ratio of standard deviation to mean interspike interval, is used as a measure of irregularity. Latency is measured as the mean and standard deviation of the latency of the first spike in response to short tone bursts, with 1.6-ms rise times. 2. The regularity and latency properties of the usual PST histogram response types are shown. Five major PST response type classes are used: chopper, primary-like, onset, onset-C, and unusual. The presence of a prepotential in a unit's action potentials is also noted; a prepotential implies that the unit is recorded from a bushy cell. 3. Units with chopper PST histograms give the most regular discharge. Three varieties of choppers are found. Chop-S units (regular choppers) have CVs less than 0.35 that are approximately constant during the response; chop-S units show no adaptation of instantaneous rate, as measured by the inverse of the mean interspike interval. Chop-T units have CVs greater than 0.35, show an increase in irregularity during the response and show substantial rate adaptation. Chop-U units have CVs greater than 0.35, show a decrease in irregularity during the response, and show a variety of rate adaptation behaviors, including negative adaptation (an increase in rate during a short-tone response). Irregular choppers (chop-T and chop-U units) rarely have CVs greater than 0.5. Choppers have the longest latencies of VCN units; all three groups have mean latencies at least 1 ms longer than the shortest auditory nerve (AN) fiber mean latencies. 4. Chopper units are recorded from stellate cells in VCN (35, 42). Our results for chopper units suggest a model for stellate cells in which a regularly firing action potential generator is driven by the summation of the AN inputs to the cell, where the summation is low-pass filtered by the membrane capacitance of the cell.(ABSTRACT TRUNCATED AT 400 WORDS)
We have studied the response properties of single units in the cochlear nucleus of unanesthetized decerebrate cats. The purpose of the study was to compare the properties of cochlear nucleus units as described in two commonly used classification schemes. Units were first classified according to their receptive-field properties based on the relative prominence of excitatory and inhibitory responses to tones and noise. Units were then classified on the basis of their discharge patterns to short tone bursts at their best frequencies (BFs). Our results show that systematic relationships exist between the receptive-field properties and discharge patterns of cochlear nucleus units. Type I units give only excitatory responses to tones and noise. They are characterized by primary-like and chopper discharge patterns. Some units in the anteroventral cochlear nucleus have prepotentials in their spike waveforms. Prepotential units most often show primary-like discharge patterns, but prepotential units characterized by nonprimary-like discharge patterns are also found. Most prepotential units lack detectable inhibitory sidebands (type I), but two of the nonprimary-like prepotential units encountered in this study had inhibitory sidebands (type III). Type III units also give excitatory responses to BF tones, but they have inhibitory sidebands. Most type III units give chopper discharge patterns, and these units can be recorded throughout the cochlear nucleus. Some type III units in the dorsal cochlear nucleus give complex discharge patterns that can be described as a composite of the pauser pattern and other patterns. The complexity of these responses seems to increase as the amount of inhibition at BF increases. Type I/III units give excitatory responses to tones and noise, but have little or no spontaneous activity so they cannot be tested directly for inhibitory responses. Type I/III units typically show chopper discharge patterns. One group of type I/III units have rate-level functions with sloping saturation, suggesting that these may receive a predominance of input from low spontaneous rate auditory nerve fibers. Type II units are nonspontaneous and give excitatory responses to tones, but give weak or no responses to noise. While type II units are homogeneous as a group in terms of their response maps. BF rate-level functions, and responses to noise, they show a variety of discharge patterns in response to short tone bursts at BF.(ABSTRACT TRUNCATED AT 400 WORDS)
Temporal encoding of stimulus features related to the pitch of iterated rippled noises was studied for single units in the chinchilla cochlear nucleus. Unlike other periodic complex sounds that produce pitch, iterated rippled noises have neither periodic waveforms nor highly modulated envelopes. Infinitely iterated rippled noise (IIRN) is generated when wideband noise (WBN) is delayed (tau), attenuated, and then added to (+) or subtracted from (-) the undelayed WBN through positive feedback. The pitch of IIRN[+, tau, -1 dB] is at 1/tau, whereas the pitch of IIRN[-, tau, -1 dB] is at 1/2tau. Temporal responses of cochlear nucleus units were measured using neural autocorrelograms. Synchronous responses as shown by peaks in neural autocorrelograms that occur at time lags corresponding to the IIRN tau can be observed for both primarylike and chopper unit types. Comparison of the neural autocorrelograms in response to IIRN[+, tau, -1 dB] and IIRN[-, tau, -1 dB] indicates that the temporal discharge of primarylike units reflects the stimulus waveform fine structure, whereas the temporal discharge patterns of chopper units reflect the stimulus envelope. The pitch of IIRN[+/-, tau, -1 dB] can be accounted for by the temporal discharge patterns of primarylike units but not by the temporal discharge of chopper units. To quantify the temporal responses, the height of the peak in the neural autocorrelogram at a given time lag was measured as normalized rate. Although it is well documented that chopper units give larger synchronous responses than primarylike units to the fundamental frequency of periodic complex stimuli, the largest normalized rates in response to IIRN[+, tau, -1 dB] were obtained for primarylike units, not chopper units. The results suggest that if temporal encoding is important in pitch processing, then primarylike units are likely to be an important cochlear nucleus subsystem that carries the pitch-related information to higher auditory centers.
Recent studies have suggested that the saliency or the strength of pitch of complex sounds can be accounted for on the basis of the temporal properties in the stimulus waveform as measured by the height of the first peak in the waveform autocorrelation function. We used a scaling procedure to measure the pitch strength from 15 listeners for four different pitches of complex sounds in which the height of the first peak in the autocorrelation function systematicallyvaried. Pitch strength judgments were evaluated in terms of a modification of Stevens's power law in which temporal information was used from both the waveform fine structure and the envelope. Best fits of this modified power law to the judged pitch strengths indicate that the exponent in Stevens's power law is greater than 1. The results suggest that pitch strength is primarily determined by the waveform fine structure, but the stimulus envelope can also contribute to the pitch strength.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.