Classification analysis of microarray gene expression data has been widely used to uncover biological features and to distinguish closely related cell types that often appear in the diagnosis of cancer. However, the number of dimensions of gene expression data is often very high, e.g., in the hundreds or thousands. Accurate and efficient classification of such high-dimensional data remains a contemporary challenge. In this paper, we propose a comprehensive vertical sample-based KNN/LSVM classification approach with weights optimized by genetic algorithms for high-dimensional data. Experiments on common gene expression datasets demonstrated that our approach can achieve high accuracy and efficiency at the same time. The improvement of speed is mainly related to the vertical data representation, P-tree,Patents are pending on the P-tree technology. This work is partially supported by GSA Grant ACT#:K96130308. and its optimized logical algebra. The high accuracy is due to the combination of a KNN majority voting approach and a local support vector machine approach that makes optimal decisions at the local level. As a result, our approach could be a powerful tool for high-dimensional gene expression data analysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.