Research in the use of ubiquitous technologies, tracking systems and wearables within mental health domains is on the rise. In recent years, affective technologies have gained traction and garnered the interest of interdisciplinary fields as the research on such technologies matured. However, while the role of movement and bodily experience to affective experience is well-established, how to best address movement and engagement beyond measuring cues and signals in technology-driven interactions has been unclear. In a joint industry-academia effort, we aim to remodel how affective technologies can help address body and emotional self-awareness. We present an overview of biosignals that have become standard in low-cost physiological monitoring and show how these can be matched with methods and engagements used by interaction designers skilled in designing for bodily engagement and aesthetic experiences. Taking both strands of work together offers unprecedented design opportunities that inspire further research. Through first-person soma design, an approach that draws upon the designer’s felt experience and puts the sentient body at the forefront, we outline a comprehensive work for the creation of novel interactions in the form of couplings that combine biosensing and body feedback modalities of relevance to affective health. These couplings lie within the creation of design toolkits that have the potential to render rich embodied interactions to the designer/user. As a result we introduce the concept of “orchestration”. By orchestration, we refer to the design of the overall interaction: coupling sensors to actuation of relevance to the affective experience; initiating and closing the interaction; habituating; helping improve on the users’ body awareness and engagement with emotional experiences; soothing, calming, or energising, depending on the affective health condition and the intentions of the designer. Through the creation of a range of prototypes and couplings we elicited requirements on broader orchestration mechanisms. First-person soma design lets researchers look afresh at biosignals that, when experienced through the body, are called to reshape affective technologies with novel ways to interpret biodata, feel it, understand it and reflect upon our bodies.
There has been an increased interest in HCI research regarding the possibilities of interactive technology applied to the field of dance performance, particularly contemporary dance. This has produced numerous strategies to capture data from the moving bodies of the dancers and to map that data into different types of display formats. In this paper, we look at the role of interactive technology in dance performance from a broader perspective, aiming at understanding the needs of dancers and their relation with the audience. To this end, we ran a focus group with ten dancers with expertise in technology. We analysed the focus group using thematic analysis. We discuss the implications for design of our results by framing the role of technology in dance performance, proposing design guidelines related to the communication to the audience, use of technology, and mapping. Moreover, we propose different levels of ambiguity and appropriation related to the creators of the performance and the audience. CCS CONCEPTS • Applied computing → Performing arts; • Human-centered computing → User studies; Interaction design theory, concepts and paradigms.
Deep Pressure Therapy relies on exerting frm touch to help individuals with sensory sensitivity. We performed frst-person explorations of deep pressure enabled by shape-changing actuation driven by breathing sensing. This revealed a novel design space with rich, evocative, aesthetically interesting interactions that can help increase breathing awareness and appreciation through: (1) applying symmetrical as well as asymmetrical pressure on the torso;(2) using pressure to direct attention to muscles or bone structure involved in diferent breathing patterns; (3) apply synchronous as well as asynchronous feedback following or opposing the user's breathing rhythm through applying rhythmic pressure. Taken together these explorations led us to design (4) breathing correspondence interactions -a balance point right between leading and following users' breathing patterns by frst applying deep pressure -almost to the point of being unpleasant -and then releasing in rhythmic fow.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.