Optimistic concurrency control, or OCC, can achieve excellent performance on uncontended workloads for main-memory transactional databases. Contention causes OCC's performance to degrade, however, and recent concurrency control designs, such as hybrid OCC/locking systems and variations on multiversion concurrency control (MVCC), have claimed to outperform the best OCC systems. We evaluate several concurrency control designs under varying contention and varying workloads, including TPCC, and find that implementation choices unrelated to concurrency control may explain much of OCC's previously-reported degradation. When these implementation choices are made sensibly, OCC performance does not collapse on high-contention TPC-C. We also present two optimization techniques, commit-time updates and timestamp splitting , that can dramatically improve the high-contention performance of both OCC and MVCC. Though these techniques are known, we apply them in a new context and highlight their potency: when combined, they lead to performance gains of 3.4X for MVCC and 3.6X for OCC in a TPC-C workload.
Optimistic concurrency control, or OCC, can achieve excellent performance on uncontended workloads for main-memory transactional databases. Contention causes OCC's performance to degrade, however, and recent concurrency control designs, such as hybrid OCC/locking systems and variations on multiversion concurrency control (MVCC), have claimed to outperform the best OCC systems. We evaluate several concurrency control designs under varying contention and varying workloads, including TPC-C, and find that implementation choices unrelated to concurrency control may explain much of OCC's previously-reported degradation. When these implementation choices are made sensibly, OCC performance does not collapse on high-contention TPC-C. We also present two optimization techniques, commit-time updates and timestamp splitting, that can dramatically improve the highcontention performance of both OCC and MVCC. Though these techniques are known, we apply them in a new context and highlight their potency: when combined, they lead to performance gains of 3.4× for MVCC and 3.6× for OCC in a TPC-C workload.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.