Mixed distearoylphosphatidylethanolamine (DSPE) and dioleoylphosphatidylethanolamine (DOPE) monolayers and bilayers have been deposited on mica using the Langmuir-Blodgett (LB) technique, as a model system for biomembranes. Investigation with atomic force microscopy revealed phase-separation for both monolayers in air and bilayers in water in the form of microscopic DSPE domains embedded in a DOPE matrix. For the monolayers in air, the step height measured between the higher DSPE phase and the lower DOPE phase was larger than expected from the molecular lengths, and a significant contrast in adhesion and friction was observed despite identical lipid end groups. This unexpected behavior resulted primarily from a difference in the film mechanical properties, the DOPE phase being inelastically deformed by the probe. For the bilayers in water, similar trends were found in terms of height, adhesion, and friction, but an additional short-range repulsive hydration/steric force over the DSPE phase contributed to the observed differences.
This work presents a methodology to measure and quantitatively interpret force curves on supported lipid bilayers in water. We then use this method to correlate topographic imaging contrast in atomic force microscopy (AFM) images of phase-separated Langmuir-Blodgett bilayers with imaging load. Force curves collected on pure monolayers of both distearoylphosphatidylethanolamine (DSPE) and monogalactosylethanolamine (MGDG) and dioleoylethanolamine (DOPE) deposited at similar surface pressures onto a monolayer of DSPE show an abrupt breakthrough event at a repeatable, material-dependent force. The breakthrough force for DSPE and MGDG is sizable, whereas the breakthrough force for DOPE is too small to measure accurately. Contact-mode AFM images on 1:1 mixed monolayers of DSPE/DOPE and MGDG/DOPE have a high topographic contrast at loads between the breakthrough force of each phase, and a low topographic contrast at loads above the breakthrough force of both phases. Frictional contrast is inverted and magnified at loads above the breakthrough force of both phases. These results emphasize the important role that surface forces and mechanics can play in imaging multicomponent biomembranes with AFM.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.