Objectives of this study were to determine the influence of trenbolone acetate (TBA) and estradiol (E2) in a combined implant on feedlot performance, carcass characteristics, and carcass composition in finishing steers. Sixty-four large-framed (394.1 kg) crossbred steers were randomly assigned to one of four pens. Subsequently, pens were randomly assigned to one of two treatments, implanted (120 mg of TBA and 24 mg of E2) and nonimplanted. Eight steers/treatment were slaughtered for initial carcass composition. Remaining steers were assigned to one of three serial slaughter dates (d 40, 115, or 143). Implantation increased circulating trenbolone (TBOH) and E2 concentrations throughout the trial. Implantation increased ADG 18% (P < .001) during d 0 to 40, 21% (P < .001) from d 0 to 115, and 16% for the entire 143 d. Implant status had no effect (P > .05) on dry matter intake. Feed efficiency was improved 13% during d 0 to 40 (P < .01) and from d 41 to 115 (P = .07). Longissimus muscle area was larger (P < .05) in implanted steers than in nonimplanted steers on d 115. Carcasses from implanted steers had a smaller (P < .05) percentage of kidney, pelvic, and heart (KPH) fat on d 143 than those from nonimplanted steers. Carcasses from implanted steers possessed more carcass protein (P < .05) on d 40. Implanted steers had an 82% increase (P < .05) in daily carcass protein accretion during the first 40 d. Implantation increased (P < .01) carcass water but did not affect carcass fat accumulation throughout the feeding period. The combined TBA+E2 implant improved feedlot performance and stimulated carcass protein accretion in feedlot steers.
Ca2+-activated Z-disk-removing activity in the P0-40 crude muscle extracts described by Busch et al. (Busch, W. A., Stromer, M. H., Goll, D. E., and Suzuki, A. (1972), J. Cell Biol. 52, 367) was purified from porcine skeletal muscle extracts by using five column chromatographic procedures in succession: (1) 6% agarose; (2) DEAE-cellulose; (3) Sephadex G-200; (4) DEAE-cellulose with a very shallow gradient; (5) Sephadex G-150. All Z-disk-removing activity eluted in a single peak off each column. Z-disk-removing activity always coeluted with Ca2+-activated proteolytic activity, so Z-disk-removing activity in the P0-40 crude muscle extract is due to a single Ca2+-activated protease (CAF). The five column chromatographic procedures produced a 140-fold increase in specific activity of the Ca2+-activated proteolytic enzymic activity; because preparation of the P0-40 crude CAF fraction before chromatography produced a 127-fold increase in specific activity, the entire procedure described here produces a 17 800-fold increase in specific activity of CAF. This increase in specific activity suggests that muscle contains 3.4 mug of CAF per g of muscle fresh weight; this content is in reasonably good agreement with our yields of 0.25-0.76 mug of purified CAF per g of muscle. Purified CAF migrated as a single band during polyacrylamide gel electrophoresis in pH 7.5 Tris-HC1 buffer but migrated as two bands with molecular weights of 80 000 and 30 000 during polyacrylamide gel electrophoresis in sodium dodecyl sulfate. Densitometric scans of sodium dodecyl sulfate-polyacrylamide gels show that the 80 000- and 30 000-dalton subunits make up 85 to 90% of the protein in purified CAF preparations and that these subunits are present in equimolar ratios.
The purified Ca2+-activated protease (CAF) isolated from porcine skeletal muscle and capable of removing Z-disks from intact myofibrils is optimally active on either myofibril or casein substrates at pH 7.5 and in the presence of 1 mM Ca2+ and at least 2 mM 2-mercaptoethanol. No CAF activity is detected when 1 mM Mg2+, Mn2+, Ba2+, Co2+, Ni2+, and Fe2+ are added singly. When added with 1 mM Ca2+, Co2+, Cu2+, Ni2+, and Fe2+ inhibit, whereas Mg2+, Mn2+, and Ba2+ have no effect on CAF activity. CAF is irreversibly inhibited by iodoacetate but is unaffected by soybean trypsin inhibitor. S0/20,W=5.90 S, and sedimentation equilibrium molecular weight - 112 000 for purified CAF. Because purified CAF migrates as two polypeptide chains with molecular weights of 80 000 and 30 000 in sodium dodecyl sulfate-polyacrylamide gel electrophoresis, the CAF molecule must consist of one each of these two polypeptide chains. Approximate molecular dimensions of 38 X 220 A can be calculated for CAF from calibrated gel permeation column data or from S0/20,W and the molecular weight. Amino acid composition and physical properties of purified CAF distinguish it from the known catheptic enzymes and from other proteases found in blood or in granulocytes. Purified CAF removes Z-disks the 400-A periodicity associated with troponin in the I band and partly degrades M lines but causes no other ultrastructurally detectable effects when incubated with myofibrils. These results agree with the earlier finding that purified CAF degrades troponin, tropomyosin, and C-protein but has no effect on myosin, actin, or alpha-actinin, and suggest that CAF may have a physiological role in disassembly of intact myofibrils during metabolic turnover of myofibrillar proteins.
Myosin, fibrinogen and albumin gels were formed by heating in pH 6.0 phosphate buffer at three heating rates. Turbidity (Ahben,,,) and solubility were monitored along with gel strength, as measured with an annular pump. Myosin and fibrinogen suspensions became turbid and solubility decreased as temperatures preceding the development of gel strength. Linearly increasing heating rates of I2"C/hr and 5O"Ci hr produced the strongest myosin and fibrinogen gels at 7O"C, whereas albumin gels formed at 95°C by heating at 12Whr or constant heating for 20 min did not differ in strength.
Myofibrils isolated from bovine longissimus (L), semitendinosus (ST) and psoas major (PM) muscles at-death and at 1, 2, 3, 6 and 10 days postmortem storage (2 and 25°C) were analyzed with sodium dodecyl sulfate (SDS) polyacrylamide gel electrophoresis. One of the subunits of troponin, troponin T, disappeared from L and ST muscle during postmortem storage at 25"C, and concurrently a 30,000 dalton component appeared. Storage of muscles at 25°C accelerated these changes in myofibrils from L and ST muscles, but SDS polyacrylamide gels of PM muscle changed little during storage at either 2 or 25°C. Crude preparations of a Ca*+ -activated factor (CAF) were isolated from bovine L, ST and PM muscles. Total CAF activity was high and similar in L and ST muscles, but PM muscle contained less than half the total CAF activity of L and ST muscles. Incubation of purified CAF with myofibrils isolated from at-death muscle caused Z-disk degradation and disappearance of troponin T and the simulataneous appearance of a 30,OOOdalton component. That incubation of purified CAF with purified troponin caused degradation of troponin-T to a 30,000-dalton component indicates that the 30,000-dalton component in whole myotibrils originates from troponin-T. The effects of CAF on Z-disk and troponin-T degradation and the relative total activity of CAF in L, ST and PM muscles are similar to the effects of postmortem storage in myofibril fragmentation, myotibrillar protein degradation and WB shear force values. These parallel effects indicate that the limited and.specific proteolysis of myofibrillar proteins is caused by a Ca'+-activated factor endogenous to the muscle cell.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.