While ARCH/GARCH equations have been widely used to model financial market data, formal explanations for the sources of conditional volatility are scarce. This paper presents a model with the property that standard econometric tests detect ARCH/GARCH effects similar to those found in asset returns. We use evolutionary game theory to describe how agents endogenously switch among different forecasting strategies. The agents evaluate past forecast errors in the context of an optimizing model of asset pricing given heterogeneous agents. We show that the prospects for divergent expectations depend on the relative variances of fundamental and extraneous variables and on how aggressively agents are pursuing the optimal forecast. Divergent expectations are the driving force leading to the appearance of ARCH/GARCH in the data.JEL Classification: C22, C73, G12, D84
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.