The increased production of ethylene during carnation petal senescence regulates the transcription of the GSTI gene encoding a subunit ofglutathione-S-transferase. We have investigated the molecular basis for this ethyleneresponsive transcription by examining the cis elements and trans-acting factors involved in the expression of the GSTI gene. Transient expression assays following delivery ofGSTI 5' flanking DNA fused to a P-glucuronidase reporter gene were used to functionally define sequences responsible for ethyleneresponsive expression. Deletion analysis of the 5' fanking sequences of GST1 identifted a single positive regulatory element of 197 bp between -667 and -470 necesary for ethylene-responsive expression. The sequences within this ethylene-responsive region were further localized to 126 bp between -596 and -470. The ethylene-responsive element (ERE) within this region conferred ethylene-regulated expression upon a mi l cauliflower mosaic virus-35S TATA-box promoter in an orientation-independent manner. Gel electrophoresis mobilityshift assays and DNase I footprinting were used to identify proteins that bind to sequences within the ERE. Nuclear proteins from carnation petals were shown to specifically interact with the 126-bp ERE and the presence and binding of these proteins were independent of ethylene or petal senescence. DNase I footprinting defined DNA sequences between -510 and -488 within the ERE specifically protected by bound protein. An 8-bp sequence (ATTTCAAA) within the protected region shares si ant homology with promoter sequences required for ethylene responsiveness from the tomato fruitripening E4 gene.
We have examined the expression of mRNAs for S-adenosylmethionine synthetase (EC 2.5.1.6), 1-aminocyclopropane-1-carboxylate (ACC) synthase (EC 4.4.1.14), and the ethylene-forming enzyme (EFE) in various floral organs of carnation (Dianthus caryophyllus) during the increase in ethylene biosynthesis associated with petal senescence. The abundance of ACC synthase and EFE mRNAs increased and S-adenosylmethionine synthetase transcripts decreased concomitantly with the ethylene climacteric in senescing petals. The increase in abundance of ACC synthase and EFE mRNAs in aging flowers was prevented by treatment with the ethylene action inhibitor 2,5-norbornadiene. Furthermore, an increase in ACC synthase and EFE transcripts was detected in petals from presenescent flowers within 3 to 6 hours of exposure to 2 microliters per liter of ethylene. The increase in ethylene production by senescing petals was associated with a concomitant increase in ethylene biosynthesis in styles, ovary, and receptacle tissues. In all tissues, this increase was associated with increased activities of ACC synthase and EFE. The increase in EFE activities by all floral organs examined was correlated with increased abundance of EFE transcripts. In contrast, the level of ACC synthase mRNA, as detected by the cDNA probe pCARACC3, did not always reflect enzyme activity. The combined tissues of the pistil exhibited high rates of ACC synthase activity but contained low levels of ACC synthase mRNAs homologous to pCARACC3. In addition, pollinated styles exhibited a rapid increase in ethylene production and ACC synthase activity but did not accumulate detectable levels of ACC synthase mRNA until several hours after the initiation of ethylene production. These results suggest that transcripts for ACC synthase leading to the early postpollination increase in ACC synthase activity and ethylene production are substantially different from the mRNA for the ethylene-responsive gene represented by pCARACC3.Ethylene biosynthesis in plant tissues is under strict metabolic regulation and subject to induction by a variety ofsignals including mechanical wounding, auxin, and endogenous developmental factors in senescing flowers and ripening fruit (30). The ethylene biosynthetic pathway was elucidated by Adams and Yang (1) and is Met--SAM2--ACC--ethylene.
We investigated the expression patterns of three 1-aminocyclopropane-1-carboxylate (ACC) synthase genes in carnation (Dianthus caryophyllus cv White Sim) under conditions previously shown to induce ethylene biosynthesis. These included treatment of flowers with 2,4-dichlorophenoxyacetic acid, ethylene, LiCl, cycloheximide, and natural and pollination-induced flower senescence. Accumulation of ACC synthase transcripts in leaves following mechanical wounding and treatment with 2,4-dichlorophenoxyacetic acid or LiCl was also determined by RNA gel-blot analysis. As in other species, the carnation ACC synthase genes were found to be differentially regulated in a tissue-specific manner. DCACS2 and DCACS3 were preferentially expressed in styles, whereas DCACS1 mRNA was most abundant in petals. Cycloheximide did not induce increased accumulation of ACC synthase transcripts in carnation flowers, whereas the expression of ACC synthase was up-regulated by auxin, ethylene, LiCl, pollination, and senescence in a floralorgan-specific manner. Expression of the three ACC synthases identified in carnation did not correspond to elevated ethylene biosynthesis from wounded or auxin-treated leaves, and there are likely additional members of the carnation ACC synthase gene family responsible for ACC synthase expression in vegetative tissues.
Carnation flower petal senescence is associated with the expression of specific senescence-related mRNAs, several of which were previously cloned. The cDNA clone pSR8 represents a transcript which accumulates specifically in senescing flower petals in response to ethylene. Here we report the structural characterization of this cDNA. A second cDNA clone was isolated based on shared sequence homology with pSR8. This clone, pSR8.4, exhibited an overlapping restriction endonuclease map with pSR8 and contained an additional 300 nucleotides. Primer extension analysis revealed the combined cDNAs to be near full-length and the transcript to accumulate in senescing petals. Analysis of the nucleotide sequence of SR8 cDNAs revealed an open reading frame of 220 amino acids sufficient to encode a 25 kDa polypeptide. Comparison of the deduced polypeptide sequence of pSR8 with other peptide sequences revealed significant similarity with glutathione s-transferases from a variety of organisms. The predicted polypeptide sequence shared 44%, 53% and 52% homology with GSTs from maize, Drosophila and man, respectively. We discuss our results in relation to the biochemistry of flower petal senescence and the possible role of glutathione s-transferase in this developmental process.
Ethylene plays a regulatory role in camation (Dianthus caryophyllus L.) flower senescence. Petal senescence coincides with a burst of ethylene production, is induced prematurely in response to exogenous ethylene, and is delayed by inhibitors of ethylene biosynthesis or action. We have investigated the role of ethylene in the regulation of three senescence-related cDNA clones isolated from a senescent camation petal library (KA Lawton et al. [1989] Plant Physiol 90: 690-696). Expression of two of the cloned mRNAs in response to ethylene is floral specific, while the expression of another mRNA can be induced in both leaves and flowers exposed to ethylene. Although ethylene induces expression of these mRNAs in petals, message abundance decreases when flowers are removed from ethylene unless an autoenhancement of ethylene production is induced. This indicates continued perception of ethylene is required for their expression. Interruption of ethylene action following the onset of natural senescence results in a substantial decrease in transcript abundance of two of these mRNAs. However, the abundance of another mRNA remains unaffected, indicating this gene responds to temporal cues as well as to ethylene. As flowers age the dosage of exogenous ethylene required to induce expression of the cloned mRNAs decreases, indicating sensitivity to ethylene changes as the tissue matures. Nuclear run-on transcription experiments indicate that relative transcription rates of cloned mRNAs increase in response to exogenous ethylene. morphological symptom of senescence. Inhibitors of ethylene biosynthesis or action delay the onset of senescence as well as the associated increase in ethylene biosynthesis. Exposing preclimacteric flowers to exogenous ethylene induces premature petal senescence and an autoenhancement of ethylene production.Flower senescence in carnation is associated with changes in gene expression involving both protein and mRNA changes (29). Some of these changes relate temporally to the onset of increased ethylene biosynthesis and are the result of increased expression of specific senescence-related mRNAs (14). Accumulation of some of these senescence-related mRNAs can be prevented by inhibitors of ethylene biosynthesis or action (14, 30). Given the strict requirement for perception of ethylene in the induction of petal senescence, the role of ethylene in the regulation of senescence-related genes is of interest.To begin to understand the mechanism of ethylene action during flower senescence, we examined the response of three cloned petal senescence-related mRNAs to ethylene. We show that continued perception of ethylene is required for senescence-related gene expression. Furthermore, changes in senescence-related gene expression are related to changes in transcription rate, ethylene concentration, and tissue responsiveness to ethylene. Our results indicate ethylene modulates senescence-related gene expression in carnation petals by a variety of mechanisms. MATERIALS AND METHODSEthylene plays a regulatory ro...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.