We consider modeling of single phase fluid flow in heterogeneous porous media governed by elliptic partial differential equations (PDEs) with random field coefficients. Our target application is biotransport in tumors with uncertain heterogeneous material properties. We numerically explore dimension reduction of the input parameter and model output. In the present work, the permeability field is modeled as a log-Gaussian random field, and its covariance function is specified. Uncertainties in permeability are then propagated into the pressure field through the elliptic PDE governing porous media flow. The covariance matrix of pressure is constructed via Monte Carlo sampling. The truncated Karhunen–Loève (KL) expansion technique is used to decompose the log-permeability field, as well as the random pressure field resulting from random permeability. We find that although very high-dimensional representation is needed to recover the permeability field when the correlation length is small, the pressure field is not sensitive to high-oder KL terms of input parameter, and itself can be modeled using a low-dimensional model. Thus a low-rank representation of the pressure field in a low-dimensional parameter space is constructed using the truncated KL expansion technique.
We consider biotransport in tumors with uncertain heterogeneous material properties. Specifically, we focus on the elliptic partial differential equation (PDE) modeling the pressure field inside the tumor. The permeability field is modeled as a log-Gaussian random field with a prespecified covariance function. We numerically explore dimension reduction of the input parameter and model output. Truncated Karhunen-Loève (KL) expansions are used to decompose the log-permeability field, as well as the resulting random pressure field. We find that although very high-dimensional representations are needed to accurately represent the permeability field, especially in presence of small correlation lengths, the pressure field is not very sensitive to high-order KL terms of the input parameter. Moreover, we find that the pressure field itself can be represented accurately using a KL expansion with a small number of terms. These observations are used to guide a reduced-order modeling approach to accelerate computational studies of biotransport in tumors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.