Microbial cell factories offer an attractive approach for production of biobased products.Unfortunately, designing, building, and optimizing biosynthetic pathways remains a complex challenge, especially for industrially-relevant, non-model organisms. To address this challenge, we describe a platform for in vitro Prototyping and Rapid Optimization of Biosynthetic Enzymes (iPROBE). In iPROBE, cell lysates are enriched with biosynthetic enzymes by cell-free protein synthesis and then metabolic pathways are assembled in a mix-and-match fashion to assess pathway performance. We demonstrate iPROBE with two examples. First, we tested and ranked 54 different pathways for 3-hydroxybutyrate production, improving in vivo production in Clostridium by 20-fold to 14.63 ± 0.48 g/L and identifying a new biosynthetic route to (S)-(+)-1,3butanediol. Second, we used iPROBE and data-driven design to optimize a 6-step n-butanol pathway, increasing titers 4-fold across 205 pathways, and showed strong correlation between cell-free and cellular performance. We expect iPROBE to accelerate design-build-test cycles for industrial biotechnology.
Styrene is an important petroleum-derived molecule that is polymerized to make versatile plastics, including disposable silverware and foamed packaging materials. Finding more sustainable methods, such as biosynthesis, for producing styrene is essential due to the increasing severity of climate change as well as the limited supply of fossil fuels. Recent metabolic engineering efforts have enabled the biological production of styrene in Escherichia coli, but styrene toxicity and volatility limit biosynthesis in cells. To address these limitations, we have developed a cell-free styrene biosynthesis platform. The cell-free system provides an open reaction environment without cell viability constraints, which allows exquisite control over reaction conditions and greater carbon flux toward product formation rather than cell growth. The two biosynthetic enzymes required for styrene production were generated via cell-free protein synthesis and mixed in defined ratios with supplemented L-phenylalanine and buffer. By altering the time, temperature, pH, and enzyme concentrations in the reaction, this approach increased the cell-free titer of styrene from 5.36 0.63 mM to 40.33 1.03 mM, an order of magnitude greater than cellular synthesis methods. Cell-free systems offer a complimentary approach to cellular synthesis of small molecules, which can provide particular benefits for producing toxic molecules.
Microbial cell factories offer an attractive approach for production of biobased products.Unfortunately, designing, building, and optimizing biosynthetic pathways remains a complex challenge, especially for industrially-relevant, non-model organisms. To address this challenge, we describe a platform for in vitro Prototyping and Rapid Optimization of Biosynthetic Enzymes (iPROBE). In iPROBE, cell lysates are enriched with biosynthetic enzymes by cell-free protein synthesis and then metabolic pathways are assembled in a mix-and-match fashion to assess pathway performance. We demonstrate iPROBE with two examples. First, we tested and ranked 54 different pathways for 3-hydroxybutyrate production, improving in vivo production in Clostridium by 20-fold to 14.63 ± 0.48 g/L and identifying a new biosynthetic route to (S)-(+)-1,3butanediol. Second, we used iPROBE and data-driven design to optimize a 6-step n-butanol pathway, increasing titers 4-fold across 205 pathways, and showed strong correlation between cell-free and cellular performance. We expect iPROBE to accelerate design-build-test cycles for industrial biotechnology.
Styrene is an important petroleum-derived molecule that is polymerized to make versatile plastics, including disposable silverware and foamed packaging materials. Finding more sustainable methods, such as biosynthesis, for producing styrene is essential due to the increasing severity of climate change as well as the limited supply of fossil fuels. Recent metabolic engineering efforts have enabled the biological production of styrene in Escherichia coli, but styrene toxicity and volatility limit biosynthesis in cells. To address these limitations, we have developed a cell-free styrene biosynthesis platform. The cell-free system provides an open reaction environment without cell viability constraints, which allows exquisite control over reaction conditions and greater carbon flux toward product formation rather than cell growth. The two biosynthetic enzymes required for styrene production were generated via cell-free protein synthesis and mixed in defined ratios with supplemented L-phenylalanine and buffer. By altering the time, temperature, pH, and enzyme concentrations in the reaction, this approach increased the cell-free titer of styrene from 5.36 0.63 mM to 40.33 1.03 mM, an order of magnitude greater than cellular synthesis methods. Cell-free systems offer a complimentary approach to cellular synthesis of small molecules, which can provide particular benefits for producing toxic molecules.Highlights: A cell-free system for styrene biosynthesis was established. This in vitro system achieved styrene titers an order of magnitude greater than the highest reported concentration in vivo.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.