Election into Major League Baseball's (MLB) National Hall of Fame (HOF) often sparks debate among the fans, media, players, managers, and other members in the baseball community. Since the HOF members must be elected by a committee of baseball sportswriters and other entities, the prediction of a player's inclusion in the HOF is not trivial to model. There has been a lack of research in predicting HOF status based on a player's career statistics. Many models that were found in a literature search use linear models, which do not provide robust solutions for classification prediction in complex non-linear datasets. The multitude of possible combinations of career statistics is better suited for a non-linear model, like artificial neural networks (ANN). The objective of this research is to create an ANN model which can be used to predict HOF status for MLB players based on their career offensive and defensive statistics as well as the number of career end of the season awards. This research is limited to investigating players who are not pitchers. Another objective of this report is to give the audience of this particular journal an overview of ANNs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.