The crystal structures of the copper enzyme phenylethylamine oxidase from the Gram-positive bacterium Arthrobacter globiformis (AGAO) have been determined and refined for three forms of the enzyme: the holoenzyme in its active form (at 2.2 A resolution), the holoenzyme in an inactive form (at 2.8 A resolution), and the apoenzyme (at 2.2 A resolution). The holoenzyme has a topaquinone (TPQ) cofactor formed from the apoenzyme by the post-translational modification of a tyrosine residue in the presence of Cu2+. Significant differences between the three forms of AGAO are limited to the active site. The polypeptide fold is closely similar to those of the amine oxidases from Escherichia coli [Parsons, M. R., et al. (1995) Structure 3, 1171-1184] and pea seedlings [Kumar, V., et al. (1996) Structure 4, 943-955]. In the active form of holo-AGAO, the active-site Cu atom is coordinated by three His residues and two water molecules in an approximately square-pyramidal arrangement. In the inactive form, the Cu atom is coordinated by the same three His residues and by the phenolic oxygen of the TPQ, the geometry being quasi-trigonal-pyramidal. There is evidence of disorder in the crystals of both forms of holo-AGAO. As a result, only the position of the aromatic group of the TPQ cofactor, but not its orientation about the Cbeta-Cgamma bond, is determined unequivocally. In apo-AGAO, electron density consistent with an unmodified Tyr occurs at a position close to that of the TPQ in the inactive holo-AGAO. This observation has implications for the biogenesis of TPQ. Two features which have not been described previously in amine oxidase structures are a channel from the molecular surface to the active site and a solvent-filled cavity at the major interface between the two subunits of the dimer.
Methylamine dehydrogenase (MADH), an alpha 2 beta 2 enzyme from numerous methylotrophic soil bacteria, contains a novel quinonoid redox prosthetic group that is covalently bound to its small beta subunit through two amino acyl residues. A comparison of the amino acid sequence deduced from the gene sequence of the small subunit for the enzyme from Methylobacterium extorquens AM1 with the published amino acid sequence obtained by the Edman degradation method, allowed the identification of the amino acyl constituents of the cofactor as two tryptophyl residues. This information was crucial for interpreting 1H and 13C nuclear magnetic resonance, and mass spectral data collected for the semicarbazide- and carboxymethyl-derivatized bis(tripeptidyl)-cofactor of MADH from bacterium W3A1. The cofactor is composed of two cross-linked tryptophyl residues. Although there are many possible isomers, only one is consistent with all the data: The first tryptophyl residue in the peptide sequence exists as an indole-6,7-dione, and is attached at its 4 position to the 2 position of the second, otherwise unmodified, indole side group. Contrary to earlier reports, the cofactor of MADH is not 2,7,9-tricarboxypyrroloquinoline quinone (PQQ), a derivative thereof, or pro-PQQ. This appears to be the only example of two cross-linked, modified amino acyl residues having a functional role in the active site of an enzyme, in the absence of other cofactors or metal ions.
The role of copper in copper-containing amine oxidases has long been a source of debate and uncertainty. Numerous electron paramagnetic resonance (EPR) experiments, including rapid freeze-quench studies, have failed to detect changes in the copper oxidation state in the presence of substrate amines. One suggestion that copper reduction might occur, has never been confirmed. Copper amine oxidases contain another cofactor, recently identified as 6-hydroxydopa quinone (topa quinone), which is reduced by substrates. Copper has been implicated in the reoxidation of the substrate-reduced enzyme, but the failure to detect any copper redox change has led to proposals that Cu(II) acts as a Lewis acid, that it has an indirect role in catalysis, or that it serves a structural role. We present evidence for the generation of a Cu(I)-semiquinone state by substrate reduction of several amine oxidases under anaerobic conditions, and suggest that the Cu(I)-semiquinone may be the catalytic intermediate that reacts directly with oxygen.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.