Partial least squares (PLS) was not originally designed as a tool for statistical discrimination. In spite of this, applied scientists routinely use PLS for classification and there is substantial empirical evidence to suggest that it performs well in that role. The interesting question is: why can a procedure that is principally designed for overdetermined regression problems locate and emphasize group structure? Using PLS in this manner has heurestic support owing to the relationship between PLS and canonical correlation analysis (CCA) and the relationship, in turn, between CCA and linear discriminant analysis (LDA). This paper replaces the heuristics with a formal statistical explanation. As a consequence, it will become clear that PLS is to be preferred over PCA when discrimination is the goal and dimension reduction is needed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.